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COMPONENT AVAILABILITY FOR AN AGE REPLACEMENT
PREVENTIVE MAINTENANCE POLICY

William P. Murdock, Jr.

Joel A. Nachlas, Chairman
Industrial and Systems Engineering

(ABSTRACT)

This research develops the availability function for a continuously
demanded component which is maintained by an age replacement preventive
maintenance policy. The availability function, A(t), is a function of time and is
defined as the probability that the component functions at time t. The
component is considered to have two states: operating and failed. In this policy,
the component is repaired or replaced at time of failure. Otherwise, if the
component survives T time units, a preventive maintenance service is
performed. T is known as the age replacement period or preventive
maintenance policy. The component is considered to be as good as new after
either service action is completed.

A renewal theory approach is used to develop A(t). Past research has
concerned infinite time horizons letting analysis proceed with limiting values.
This research considers component economic life that is finite. The lifetime,
failure service time and preventive maintenance service time probability
distributions are unique and independent. Laplace transforms are used to

simplify model development. The age replacement period, T, is treated as a




parameter during model development. The partial Laplace transform is
developed to deal with truncated random time periods. A general model is
developed in which the resulting availability function is dependent on both
continuous time and T. An exact expression for the Laplace transform of A(¢, T)
is developed.

Two specific cases are considered. In the first case, the lifetime, repair
and preventive maintenance times are unique exponential distributions. This
case is used to validate model performance. Tests are performed for t=0, t—oc0
and for times in between these extremes. Results validate mode! performance.
The second case models the lifetime as a Weibull distribution with exponential
failure repair and preventive maintenance fimes. Results validate model
performance in this case also. Exact infinite series for the partial and normal
Laplace transform of the Weibull distribution and survivor function are presented.

Research results show that the optimum infinite time horizon age
replacement period does not maximize average availability for all finite values of
component economic life. This result is critical in lifecycle maintenance

planning.
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CHAPTER 1

INTRODUCTION

1.1 Background

Maintenance costs represent a major portion of the total production
costs in industrial environments. Surveys have shown the average percentage
of cost attributed to factory maintenance activities ranges from about fifteen to
forty per cent with an average around twenty-five per cent [1, 2]. Obviously, an
effective maintenance planning program serves to reduce these costs thus
increasing bottom-line profits. The key to effective maintenance planning is
minimizing unplanned downtime. For example, an article appearing in Service
News [3] and Jacobson and Arora [4] report that computer downtime has a
huge impact on the bottom-line profits of major businesses. A survey detailed
in [3] shows that the cost to American corporations due to computer downtime
is about four billion dollars annually. The net impact of computer downtime is
estimated at $78,191 per hour and $330,000 per outage. An extreme case is
Wall Street, where one minute of computer downtime means losses measured

in millions of dollars [3, 4].



The implication is clear: minimize unplanned downtime through
effective planned mairtenance. Planned or scheduled maintenance is referred
to as preventive maintenance. Most preventive maintenance actions require a
system or component to be non-operational. However, the advantage is that
these actions may be scheduled when the impact on production and
operational requirements is minimized. For instance, preventive maintenance
actions might be scheduled during a night shift or on a week-end when
production requirements are not high. The objective is to minimize unplanned
downtime during peak times of production and operations. As stated in the
examples above, unplanned non-operational periods during these peak times

can be very costly.

1.2 Preventive Maintenance

Preventive maintenance policies may be thought of as the replacement,
servicing, overhaul, etc. of one or more functioning components in a device at
selected (scheduled) points in time. Thus, the preventive maintenance (PM)
action is defined as required for the specific situation. Assumptions
- concerning the preventive maintenance action are discussed later. Effective
maintenance planning must also deal with the unplanned downtime that will
occur. As noted, these emergency or failure repairs, replacements, etc. may

be very costly. The objective of a preventive maintenance policy is to avoid




the high costs of failure service (unplanned downtime) by performing
preventive maintenance on functioning (non-failed) components and thus
accrue the usually lower costs of preventive maintenance service (planned

downtime).

There are three common types of preventive maintenance policies.
These are age replacement, block replacement and opportunistic preventive
maintenance policies. An age replacement policy specifies a component age,
T, at which a component undergoes a preventive maintenance action (planned
downtime). If the component fails before time T (unplanned downtime), the
component receives a failure maintenance. For the purposes of the research
described here, the component is considered as good as new after either a
failure repair or a preventive maintenance action. Thus, the clock tracking
component age is reset after either a failure repair or preventive maintenance

action.

A block replacement policy specifies a defined time interval, Ty,... The
component is preventively maintained at integer multiples of Ty, regardliess
of the age of the component. If the component fails between the block
replacement times, the component receives a failure maintenance. Thus this
policy does not consider when the last component failure service occurred. A
common example of the block replacement policy is the periodic replacement
of stadium lights. In this case the set-up costs tend to be high and thus it is
more cost effective to replace lights at given intervals regardless of their age.

Berg and Epstein [6] provide a concise description and comparison of age,




block, and failure replacement policies. In this cese, a failure replacement
policy only performs failure repair/replacement. No preventive maintenance is

performed.

The opportunistic replacement policy may follow any one of an infinitely
large number of preventive maintenance policies. In this sense, it covers all
other policies that do not fit the above definitions of age replacement and block
replacement. An example is the servicing of an automobile. During a
scheduled oil change, an inspection reveals that the brakes are nearing the
end of their service life. The brakes are replaced even though they may have
lasted an additional amount of time. The brake replacement was

"opportunistic.

1.3 Preventive Maintenance Implementation Concerns

Administratively, the age replacement policy is more difficult to
implement than the block replacement policy. Each component of each
subsystem or system must be tracked and scheduled for preventive
maintenance actions. Block replacement requires less administrative
overhead since the components may be “grouped" for block preventive
maintenance. Depending on the complexity of an opportunistic policy, the

administrative overhead may range from small to large. For large complex




systems, block replacement may be easier to implement. However, most
companies have computer-based maintenance tracking systems that aliow
more complex preventive maintenance policies to be effectively executed. The
preventive maintenance scheduling policies may be implemented and

automatically tracked by a computer-based maintenance action system.

In reality, 6pportunistic maintenance policies will intertwine with age
replacement or block replacement policies. Preventive maintenance
performed according to an age replacement or block replacement policy will at
times reveal other problems that require maintenance. These problems may

be corrected at these “opportunistic” times.

The research reported in this dissertation concerns the age replacement
preventive maintenance policy. The policy is examined for single component
systems or systems that may be modeled as a single component.

Unscheduled component failure repairs and scheduled preventive
maintenance actions are considered to be "perfect”. These service actions
renew the component; thus the component is as good as new at the conclusion

of a service action.



1.4 Component Availability

The effectiveness of repairable components and systems is
appropriately measured by a parameter known as availability. Availability,
A(t), (a function of time) is defined as the probability that a system or

component is operational at time t. The limiting availability, A = tlim A(t),

may be thought of as the proportion of time the system is operational in the

long term. Thus in the long term, the limiting availability, A, is [1, 7]

Eluptime]

A= Eluptime]+E[downtime]

Other measures involving A(t) include [7]:

(1) Average availability, Aqyg(T):
Aag(T) = 5 Jo Alb) dt . (1.1)

(2) Limiting average availability:

A = lim Agy(r) = lim m Jo Al dt.



Interval average availability may be found for an interval [y, 5] using

Pag(Te = T1) = ey Jrf Alt) dt .

(Ta—

In the computer manufacturing area, many manufacturers are
responding to customer requirements by guaranteeing availability levels for
their systems [5]. Often the purchase and/or service contracts designate
specific time intervals where availability levels are evaluated. If the contract
availability levels are not met at these designated times, the manufacturer
provides compensation (rebate, extended warranty, etc.) to the customer. In
these cases, using limiting availability as a planning tool may not provide the
expected results from either the manufacturer's or customer's point of view. A
more appropriate measure may be the average availability for the time period
under consideration. Furthermore, evaluation of an optimal age replacement
preventive maintenance policy, T*, using the limiting case where time
approaches infinity may not provide the expected results. The key to the
proper evaluation is obtaining the function A(t), where A(t) provides the

probability the system or component operates as a function of time.




1.5 Research

The focus of this research effort is the age replacement preventive
maintenance policy. Previous work [7,12] in this area has concentrated on
obtaining the optimal replacement period, T*, to minimize a cost rate function.
Most models assume that failure maintenance cost is ¢; and a preventive
maintenance action cost is ¢;. Furthermore, research [7,12] has shown that for
c1 > cg, an optimal T™ exists while for ¢; < ¢g, T* goes to infinity (i.e. perform no
preventive maintenance). These results are obtained by considering the limit
as time, t, approaches infinity. Additionally, if ¢; and ¢, are taken to be the
expected failure repair time and the expected preventive maintenance time,
then the results shown above also maximize the limiting availability.

It is emphasized that in both cases, a limiting result is developed by
taking the limit as t approaches infinity. When applied to actual systems and
components, this implies an infinite time horizon for system or component
operational use. Most components and systems have finite time horizons over
which they are operated and repaired. At the end of the system or component
life, the system is often replaced by newer technology. Many examples of this
exist in the computer and telecommunications industries. Other studies have
evaluated the case where failure repair times and preventive maintenance
times are stochastic but are assumed to be independent and identically

distributed random variables.

The objective of this research is to evaluate age replacement times, T*,

that maximize average availability for finite time intervals. This maximization of




the average availability proceeds unconstrained. The results obtained are
compared to the optimal age replacement period obtained from the limiting

case.

The first task of this research is the development of a stochastic model
to allow the formulation of the function A(t) for an age replacement preventive
maintenance policy. The stochastic model is based on the assumption that the
component lifetime, failure repair times, and preventive maintenance times are
unique random variables having known and unique distribution functions.
Even though past research has recognized that failure repair and preventive
maintenance times may be distinct random variables with distinct distribution
functions, the limiting case analysis allows the mean value of these
distributions to be used in the model development. Thus, the model is
developed to provide an optimal replacement period, T;o, for the infinite time
horizon. However, the mode! development methodology in the limiting case
does not allow the development of the availability function, A(¢). The
availability function, A(t), allows both the time interval case as well as the
limiting cases to be evaluated. The availability function, A(t), is developed
analytically and is numerically estimated for specific lifetime, failure repair time

and preventive maintenance time distributions.

The second task includes the evaluation of these models for specific
component lifetime, failure repair time and preventive maintenance time

distributions. First, the exponential case is evaluated. Unique exponential




distributions are designated for the failure repair time and the preventive

maintenance time.

The second case to be treated considers aging, i.e., the component's
lifetime distribution has an increasing failure rate (IFR). This means that given
the component survives until time ¢, the probability that a component fails in
the next instant of time increases as ¢, the conditional survival time increases.
One widely accepted lifetime distribution exhibiting the IFR characteristic is the
Weibull distribution with shape parameter greater than one (8 > 1). Therefore,
the Weibull failure case is studied in combination with exponential failure
repair and preventive maintenance actions. These random service periods
represent the component or system downtime (non-operational) while the
component or system lifetime distribution function and the age replacement

period govern the system uptime (operational).

Specific expressions are developed for A(t) in each of the cases
discussed above. For each case, T, the age replacement policy that
maximizes the average availability over the interval [0, t] is found using a
numeric search. Time interval values considered include the component's
mean lifetime and characteristic life in the case of Weibull lifetime distribution.
Furthermore, analysis is accomplished at small values of time as well as large
values of time to verify availability model performance near t = 0 and the
limiting case, t—»oco. Whenever possible analytical results have beén obtained

before resorting to specific numerical techniques and examples.

10



1.6 Summary

This research develops the component availability function, A(t), for the
age replacement preventive maintenance policy where component lifetime,
failure repair and preventive maintenance times are stochastic and have
known but unique distribution functions. The model development assumes that
service actions, whether a failure repair or preventive maintenance, provide
complete component or system renewal. Thus the component is as good as
new at the conclusion of a service action. T, the age replacement period, is
treated as a parameter in the development of A(t). We find the age
replacement period, T, that maximizes average availability over an interval [0,t]
(unconstrained) through numerical integration. Intervals examined include the
component’'s mean lifetime as well as the characteristic life in the case of the
Weibull lifetime distribution. The characteristic life for the Weibull lifetime
distribution is defined as the point in time, ¢, where there is a cumulative
probability of component failure occurring at or before time ¢, equal to 0.632

[95].

Both constant failure rate (CFR) (no aging effects) and increasing failure
rate (IFR) (aging) component lifetime distributions are considered.
Exponentially distributed failure repair times and preventive maintenance times
are examined for an exponentially distributed lifetime as well as for Weibull

lifetimes. Model validation is accomplished at values of t near zero and for

11




large values of ¢, to approximate the limiting case. Final results are compared

to the limiting case.

12



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Over the past thirty-five years there has been a continuing and growing
interest in the use of preventive maintenance to increase system productivity,
product quality, and cost effectiveness. This is not surprising considering the
vast industrial complex engaged in producing goods and delivering services.
The vast majority of these systems and components require periodic
maintenance of some type to maintain production efficiency as well as product
and service quality. With the exception of electronic components and systems,
these systems and components age with use and time. Their performance
may be termed deteriorating with respect to the probability of failure over time.
When this characteristic is coupled with the large cost of unscheduled
downtime, it is logical that research pertaining to preventive maintenance

policies has produced many models for systems and components exhibiting

deterioration.

13



The purpose of this review is to give an overview of the type of
preventive maintenance models produced by past research. Specific attention
is given to models dealing with age replacement policies. These preventive
maintenance policies repair or replace a component or system at failure or
perform a preventive maintenance action at a pre-specified time interval, T.
This time interval is usually considered the age of the component since these
models consider complete component or system renewal at the conclusion of a
failure maintenance or preventive maintenance action. Hence, T is known as
an age replacement policy or period. Discussions concerning model
development and analysis techniques such as renewal theory and Laplace
transforms are included. The review includes a short discussion concerning
probability modeling for component lifetimes as well as for the time required for
repair/replacement and preventive maintenance action. Finally, a summary of

the presentation concludes this chapter.

2.2 Preventive Maintenance Models

Four major articles review the research performed concerning
preventive maintenance models. These include the 1965 paper by McCall [8],
the 1976 paper by Pierskalla and Voelker [9], the 1977 paper by Lie, et al [10],
and the 1989 paper by Valdez-Flores and Feldman [11]. These papers

provide a chronological review of the research performed concerning

14




preventive maintenance. The content of each of these papers is discussed
below in chronological order.
In addition to the articles named above, bibliographic references may be

found in Osaki and Nakagawa [52], Sherif and Smith [53] and Sherif [54].

2.2.1 Preventive Maintenance Research Prior to 1965

In "Maintenance Policies For Stochastically Failing Equipment: A
Survey" [8], McCall divides maintenance models into two distinct categories.
These are preventive maintenance and preparedness models. In preventive
maintenance models, the component, system or equipment is subject to
stochastic failure and the state of the component is always known with
certainty. In what McCall terms preparedness models, the component is
subject to stochastic failure, however, the state of the component is not known
with certainty. McCall's discussion is divided by whether the component's
lifetime failure distribution is known or not known with certainty. The research
performed in this dissertation pertains to age replacement preventive
maintenance policies for which the component's lifetime probability density
function is known. Thus discussion of past research in this time period is
 limited to this area.

The periodic preventive maintenance policy repairs or replaces
components at failure or preventively maintains them at age T. This is the age

replacement preventive maintenance policy defined above. The periodic
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preparedness policy inspects and/or repairs/replaces equipment at age T. In
the simplest situation, both models consider the component to be in one of two
states - either an operational state or a failed state. The preventive
maintenance model detects component failure immediately while the
preparedness model detects component failure only at the time of an
inspection or repair/replacement.

The simplest and one of the best known preventive maintenance
policies is the strictly periodic or age replacement policy. Recall that in this
policy the component is repaired/replaced upon failure or when the component
reaches an age replacement policy of T. The model considers complete
component renewal at the completion of either service action. Thus, the
component age T is the same as the time since the last service action was
completed. Barlow and Hunter {12] as well as Barlow and Proschan [13] have
shown this type of policy is only worthwhile to implement in the situation where
components exhibit the effects of aging (strictly increasing failure rate, see [7])
and the cost of repair/replacement due to component failure (unscheduled
downtime) is greater than the cost of a preventive maintenance action. These
costs may also be represented as the time required to perform the component
service actions described.

In the case of cost interpretation, the objective is to minimize cost while
in the case of time interpretation, the objective is to maximize the proportion of
time the component is operational. This is also known as limiting availability.
Both analyses are equivalent and an infinite time span is considered. Even

though the costs (times) for failure maintenance and preventive maintenance
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are considered to be random variables with known distributions, the infinite
time span assumption allows the expected vaIUes of these quantities to be
used. Thus, one may derive an optimal age replacement period that minimizes
the cost rate or maximizes the limiting component availability for an infinite
time horizon.

However, the'analysis does not allow for the derivation of the cost or
availability as a function of time. Therefore, the calculation of the cost or
average availability over a specified time interval may not be found since the
cost rate or availability function is not available for integration. Other research
work referenced for the age replacement policy includes Barlow and Proschan
[13], Campbell [14], Dean [15], Drenick [16], Kamins and McCall [17], Klein and
Rosenberg [18], Lotka [19], Morse [20] and Welker [21 and 22]. Furthermore,
both Barlow and Proschan [13] and Derman [23] have shown that for infinite
time horizons, a strictly periodic replacement policy, i.e., non-random, is
optimal over random replacement policies.

Additionally, the McCall article discusses two preventive maintenance
pblicies for systems or equipment made up of several parts. An opportunistic
model developed by Radner [24] considers a two component system consisting
of component 1 and component 2. The components are considered to fail
stochastically and independently. Component 1 has a strictly increasing failure
rate (deterioration) while the component 2 has a constant failure rate.
Component 2 does not exhibit deterioration and thus is modeled using the
exponential probability density function for its lifetime. The model does

recognize economies of scale in maintenance. This means that it is less costly
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to replace both components at one time than it is to replace each component
separately. Radner [24] termed thece model conditions as stochastic
independence and economic dependence. He shows that the optimal policy is
characterized by two decision parameters, n and N. If the age of the system, x,
is less than n, (x < n), then component 1 is replaced/repaired only if it fails. If
n < x < N, then replace component 1 if either part fails. If x > N, then
replace/repair component 1 at once.

A block replacement policy is defined by McCall [8]. In this policy,
system components are preventively repaired/replaced at regular non-random
intervals regardless of their age. The model assumes each component is
repaired upon failure as well. Comparisons of the operating characteristics
between block and age replacement policies may be found in Barlow and
Proschan [7 and 13], Boivard [25], Cox [26], Flehinger [27, 28 and 29], Hunter
and Proschan [30], and Arrow, et al [31].

An age replacement model for finite time horizon, (0, t), has been
researched and analyzed. This policy is known as a sequential preventive
maintenance policy. This policy repairs or replaces the component upon
failure or at the age replacement interval, T. However, it differs from the
previous infinite time horizon case in that at each event (whether failure or
preventive maintenance), the optimal replacement period, T, is recalculated for
the remaining time period. Thus, this replacement period minimizes the
expected cost over the remaining period (or maximizes the component
availability depending on the interpretation). Barlow and Proschan [13] prove

that the expected cost resulting from following an optimal sequential policy
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during the interval (0, t) is always less than or equal ‘o the expected cost of the
corresponding optimal periodic policy. They also prove that the optimal
sequence is non-random and illustrate a method for calculating the optimal
intervals.

The periodic preparedness model, as discussed in McCall [8], and
under the conditions where the component's lifetime distribution is known may
concern either an optimal replacement period or an optimal inspection period.
For the case where an optimal replacement period is found, the component's
condition is only known at the time of replacement and the prescribed service
action is always carried out regardless of the component's condition.
References for research in this area include Jorgenson and McCall [32],
Jorgenson [33], Savage [34], Solomon and Derman {35] and Veinott and
Wagner [36]. In the other case, an optimal inspection period is found. The
difference in this case is that the component is inspected for proper operation
and repaired/replaced only if found to be in a failed state. References for work
in this area include [32], [33], Barlow, et al [37], Coleman, et al [38], and
Kamins [39]. Kamins [39] and Coleman, et al [38] have also extended the

model to include imperfect inspection.

2.2.2 Preventive Maintenance Research Between 1965 and 1975

Two papers provide excellent summaries of the research accomplished

concerning preventive maintenance during this time period. The first, "A
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Survey of Maintenance Models: The Control and Surveillance of Deteriorating
Systems" by Pierskalla and John A. Voelker [9] surveys the research
accomplished since the 1965 paper by McCall [8]. Contrasting this survey is
the paper by Lie, et al [10], titled "Availability of Maintained Systems: A State-
of-the-Art Survey". This paper provides a systematic classification of the
literature relevant to availability. One specific area is the effect of preventive
maintenance on availability. An excellent discussion of the various definitions
of availability is also given in this paper.

Lie, et al [10] classify availability depending on the time interval
involved. These are: (1) instantaneous availability, A(t), (2) average uptime or
average availability for a time interval [0, 7], designated A,,,(7), and (3) steady

state availability, A. These quantities are defined as follows:

(1) A(t) = Probability the component is operational at time, t
(2) Agug(7) = 1 [7 A(t) dt

(3) A=limA().

t—00

These definitions may be found in Barlow and Proschan [7] and Sandler [40].
Barlow and Proschan [7] also define the limiting average availability, A,,. This

measure, A, , is mathematically defined as

A = lim Agyy() = lim 1 [TA(t)dt .
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They show that A, is equivalent to A when the limit exists. Previously, limiting
availability was often referred to the limiting efficiency (see Barlow and Hunter,
1960 [12]).

Lie, et al [10] claim that the most appropriate measure of availability
depends on a component's or system's mission and its condition of use. They

provide the following examples of application:

The steady-state availability may be a satisfactory
measure for systems which are to be operated
continuously, for example a detection radar system. The
average uptime [average availability] may the most
satisfactory measure for systems whose usage is defined
by a duty cycle, for example, a tracking radar system
which is called upon only after an object has been
detected, and is expected to track continuously during a
given time period. For systems which are required to
perform a function at any random time, the instantaneous
availability may be the most satisfactory measure. An
example of such a system is a data processing system
used in air traffic control which is called upon to process
flight paths, and then remain idle for a length of time.

Lie, et al [10] also note that in general, several types of preventive
maintenance policies are possible. These are age replacement, block
replacement, random periodic replacement and sequential determined
replacement. Numerous references are cited for these types of preventive
maintenance. They note that the earliest research on planned replacement

was by Campbell [14].
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Maintenance models for this period are extensively surveyed by
Pierskalla and Voelker [9]. This paper includes only those models which
involve an optimal decision to procure, inspect, repair and/or replace a single
component exhibiting deterioration. Their presentation surveys discrete-time
maintenance models and continuous-time maintenance models. In discrete-
time maintenance models, a component is monitored and a decision to repair,
replace and/or restock the component is made at discrete intervals in time. In
continuous-time maintenance models, actions and events are not restricted, a
priori, to occur only within a discrete subset of the time axis. The age
replacement preventive maintenance policy falls into this latter category.
Hence, discussion will be limited to this area.

Pierskalla and Voelker [9] note that research has extended the results of
the Barlow and Proschan [41] optimal age replacement model for the infinite
time horizon to include the age replacement policy under a total discounted
cost criterion [42] as well as including an age-dependent cost [43]. This cost is
defined as the increasing burden of routine maintenance as the component
ages resulting from its diminishing productivity or reduced salvage value. It is
also noted that Glasser [44] has extended the Barlow and Proschan's optimal
age replacement period, T', for the truncated normal, gamma and Weibull
density functions. Other types of models considered include age dependent
costs that are incurred at discrete times [45], and a generalization to include,
c*, @ maximum cost rate that when exceeded causes the component to be

replaced [46]. This maximum cost rate, c¢*, is set by the decision maker.
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Multiple component systems are considered by Nakagawa and Osaki
[47]. Their research considers a two-component redundant system with
identical components. One component operates while the other is in standby
status. The component in standby status does not age. Failure of the system
occurs when both units are undergoing maintenance due to failure or
scheduled preventive action. Under the conditions where mean failure repair
time is greater than mean preventive maintenance time, they find the optimal
age, T, that a component should be serviced. Nakagawa and Osaki find the
optimum T that maximizes the limiting availability. Thus an infinite time horizon
is considered.

Makabe and Morimura [48, 49 and 50} and Morimura [51] consider an
age replacement medel where the component is replaced at the k** failure.
The k — 1 previous failures are corrected by minimal repair. Under minimal
repair a component is repaired to operating condition. However, the repair is
assumed to not effect the aging of the component. Hence, after the minimal
repair, the component restarts deterioration, according to its Iifétime density, at
the same point in time that it began minimal repair. For components with
strictly increasing failure rates, the optimal policy consists of t” and k. If the
component's k% failure occurs before t” then a minimal repair is completed and
replacement is completed at the next component failure. If the k' failure
occurs after t” then a replacement is carried out. Optimality is shown for the
infinite time horizon case in which limiting component efficiency (availability) is

maximized.
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2.2.3 Preventive Maintenance Research From 1976 to Present

In "A Survey of Preventive Maintenance Models for Stochastically
Deteriorating Single-Unit Systems," Valdez-Flores and Feldman [11] (1989)
present a state-of-the-art survey of the research accomplished in preventive
maintenance mathematical modeling since the survey accomplished in 1975 by
Pierskalla and Voelker [9] as well as the bibliographic references provided by
Osaki and Nakagawa [52], Sherif and Smith [53] and Sherif [54]. The
maintenance models considered in this survey include those for systems that
may be modeled as a single unit or component.

Valdez-Flores and Feldman classify age replacement models within
what they term "inspection models". This group of models considers the case
where the status of the component or system may not be continuously
observed. However, it may be possible to perform an inspection to ascertain
the status of the system. These models usually assume that the state of the
system is unknown unless an inspection is performed. Initial models assumed
that the inspection information was perfect. Later, research allowed for the
case where inspections were not perfect. Thus, age replacement preventive
maintenance research has progressed now to include inspection policies.
Optimal policies are still developed by minimizing the cost rate function or the
expected total cost per inspection cycle. Barlow, et al [37] presented this

research first.
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Beichelt [55] extends this basic model by finding optimal inspection
times for the cases when system replacement and no system replacement of a
failed system are permitted. He also obtains optimal inspection schedules
when the lifetime distribution of the system is partially known and when it is
completely unknown (system mean lifetime is considered known). Thus this
research extends the inspection model to cases where incomplete or unknown
initial conditions prevail. Luss [56] extends this further to the case where
system or component operational state is multi-state and is only observable
through inspection. The model is generalized for L states of component
operational condition. Optimal control limit policy with control state « and the
optimal inspection intervals for states 0, 1, ..., o — 1 are found through an
iterative procedure by assuming exponentially distributed state transition times
(Markovian assumptions).

Interestingly, Rosenfield [67 and 58] examines a model where
component deterioration follows a discrete-time Markov chain. The operating
and replacement costs increase with state number and inspections are
considered perfect. Kander [59] also considers inspection for a component
that deteriorates at discrete levels. He models the situation using semi-Markov
processes to determine the optimal inspection schedule that minimizes long-
run expected cost per unit time.

Nakagawa and Yasui [60] present an algorithm to compute sub-optimal
inspection times for components that do not have exponential failure times.
Their research demonstrates tHe validity of a numerical example for the case

where the component's lifetime distribution is Weibull. A recursive approach
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computes successive inspection times backwards . For lifetime hazard
functions characterized by an increasing hazard rate, Munford [61] shows that
an inspection policy with decreasing intervals between successive inspections
as a function of component age are better than strictly periodic inspection
policies. ;
Minimal repair models have also been considered. Park [62] presents
an entirely new concept of age replacement under minimal repair as that
introduced by Barlow and Proschan [13]. Park [62] finds the number of failures
and minimal repairs before the system is replaced instead of a fixed age to
replacement. He develops a closed-form solution of his model for the case
where the system's lifetime distribution is Weibull. Numerically, Park [62]
shows his policy provides a lower long-run expected cost per unit time than a
fixed-age replacement policy. However, a mathematical proof is not offered.
Recent research includes Nachlas, 1989 [63] and Lam and Yeh, 1994
[64]. Nachlas develops a constrained optimization model for selecting
replacement policies for both age and block replacement. This model's
solution finds the replacement policy that minimizes the cost rate function
constrained by a confidence interval on required availability. Nachlas's model
assumes failure repair and preventive maintenance times are random but
identically and independently distributed. Lam and Yeh present algorithms for
deriving optimal maintenance policies to minimize the mean long-run cost-rate
for continuous-time Markov deteriorating systems. The model assumes the

deterioration state is only known through inspection. They consider five
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maintenance strategies. These are failure replacement, age replacement,

sequential inspection, periodic inspection and continuous inspection.

2.2.4 Summary of Preventive Maintenance Research

The models described above consider the infinite time horizon case in
which cost rate functions are developed and minimized. The alternative
approach presented uses Markov chain analysis. In the case of the infinite
time horizon case, cost and/or availability functions with respect to time are not
developed. Under Markovian assumptions, the lifetime, failure repair and
preventive maintenance probability density functions are exponential. Under
these restrictive assurnptions, cost and availability functions with respect to
time may be developed. Applicable density functions will be discussed later in
this review. However, it is evident that the instantaneous availability function,
A(t), is a prime research area for the cases where lifetime, repair and

preventive maintenance distributions are not all exponentially distributed.

2.3 Analytical Techniques

The summary of the preventive maintenance models presented above
shows that with the exception of Markov models, the optimal preventive

maintenance policy is derived by developing an expected total cost rate
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function. This function is minimized to find the optimal policy. The
development of this function requires that an infinite time horizon be assumed.
Often, this is not realistic as system lifecycles consist of a finite operational
period. This section summarizes analytical techniques and methods pertinent
to developing the component instantaneous availability, A(t), for an age

replacement policy.

2.3.1 Renewal Theory

Renewal theory deals with stochastic processes that have renewal
points. At these renewal points, the stochastic process probabilistically starts
again or renews itself. A renewal process is therefore made up of a finite
number of random periods, n, each with density function, f;(t)Vi=1,..., n,
which reoccur in a specific order (cycle) as the process progresses. Thus the
renewal process consists of these well defined cycles that are probabilistically
identical. Interestingly, renewal theory began as the study of probability
problems connected with the failure and replacement of components, such as
light bulbs [26]. Barlow and Proschan [13] and Cox [26] offer a mathematical
development of renewal theory.

One important property stems from the definition of a renewal process
given above. Since a time-based renewal process deals with some finite
number of random time periods that occur in a specific order during a cycle, it

is often necessary to find the density function for the time between renewals.
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This may be accomplished by taking the convolution of the probability density
functions represented in a renewal cycle, f;(t)Vi=1,..., n. For the time-based
renewal process, this is known as the density function for time between

renewals and is designated h(t). Mathematically, h(t)is stated as
ht) = /i) ® f(1) ® ... ® fr_1(t) ® fr(1) . (2.1)

where the symbol, ® , represents the convolution operator. The convolution of

two functions, f,(t) ® f,(t), is mathematically defined as

A®) ® £,(t) = [y f1(t) folt — u)du = 3 fo(t) f1(t —w)du.

2.3.1.1 Laplace Transforms

The probability density function, k(t), may be found mathematically by
taking the convolution as defined in equation 2.1.

The Laplace transform convolution theorem provides a method for
finding h(t) without explicitly evaluating the multiple integrals required for
equation 2.1. If we designate the Laplace transform of a function, £[f(¢)], as

£~ (s) then the following statements hold [97]:

(1 E[f ()] = f(s)
2  £YfrEl=f0

29



(3) fi(H) ® £(t) = £[f;(s) f5(s)] -

For many cases, the inversion of the Laplace transform into a time
domain function may be found through tables, partial fraction decomposition,
contour integral evaluation as well as other methods. However, the case may
arise where the inverse of h*(s) may not be found exactly. In this case,
approximation methods must be used. These methods include numerical
inversion techniques evaluated by Davies and Martin [65] as well as those
evaluated and implemented in Mathematica (Wolfram Research Inc.) by
Cheng, et al [66]. Several numerical inversion methods for Laplace transforms
are evaluated. These include the Stehfest method [67], the Papoulis legendre
polynomial method [68], the Durbin method [69], the Crump method [70], the
Weeks method [71], and the Piessens gaussian quadrature method [72 and
73]. These methods provide an estimate of the time domain function at a
specific value of time, f(t = ¢). Functions using the Laplace transform

function, f(s), are developed and implemented [66].

2.3.2 Lifetime Probability Density Functions

A component's lifetime probability density function, f;(t), defines the
probability density function for time to component failure. This function defines

the probability of component failure at time ¢ + ¢, where ¢ is an infinitesimally
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small increment in time. Much research has been accomplished concerning
the proper probabilistic modeling of the component lifetime density function.
The most frequently used density function is the exponential density function.
This density function seems to model electronics well. The most
advantageous aspect of this probability density function is its mathematical
tractability and it is implemented often for this reason alone [88)]. Justification
for the use of the exponential lifetime density may be found in [74, 75, 76, 77,
78, 79, 80, 81 and 82].

Other references such as Bell, et al [83] maintain that density functions
such as the truncated normal, log-normal and Weibull density functions are
applicable in many cases. Bell, et al [83] claim that a significant portion of
aircraft parts follow a normal lifetime density function. Lie, et al [10] make the
following statements concerning Iifetime‘density functions:

(1) In many practical situations, lifetime density functions are markedly
skewed and thus are not normally distributed.

(2) The gamma and Weibuli density functions provide the skewed
characteristic discussed above.

(3) The Weitull density function is known to be suitable in describing
fatigue failure such as that occurring in vacuum tubes and ball-bearings.

(4) The log-normal density function seems to fit repair times than failure
times.

The Weibull density function is justified for use as a lifetime density

function in [83, 84, 85 and 86] and the truncated normal in [83]. Lie, et al [10]
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provide additional references on other lifetime density functions such as the

Erlang, gamma, Rayleigh, uniform, extreme value and arbitrary functions.
Proper modeling of a component's lifetime density must consider the

component's family (mechanical, electronic, etc.) characteristics and the failure

mechanisms at work on and/or within the component.

2.3.3 Repair Time Probability Density Functions

Repair time density functions have usually been approximated by an
exponential density function for analytical purposes [87]. Rohn [88] considers
the repair times of complex electronic equipment. He maintains, in the case of
electronic repair, that the repair times consist of a high frequency of short times
and a few long repair times. This characteristic, according to Rohn, suggests
an exponential lifetime density function.

Other studies concerning airborne radar equipment and ground
equipment for surface-to-air missile systems have shown that the log-normal
density function fits the observed repair times best [89 and 90]. Additional
references justifying the use of the log-normal probability density function to

model repair times include [91, 92, 93 and 94].
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CHAPTER 3

PROBLEM STATEMENT

3.1 Stochastic Process Description

Failure Cycle Preventive Maintenance Cycle
QOperational Period Repair Operational Period PM.
t<T t=T
Failure before Time T t, Unit survives until Time T t)

Figure 3.1 Age Replacement Preventive Maintenance Stochastic Process

The problem analyzed in this research is depicted in Figure 3.1. This
figure represents a stochastic process based upon an age replacement
preventive maintenance policy for a continuously demanded component. In
this situation, the component is repaired or replaced if it fails before T time
units have passed since the last maintenance action. This event is called a
failure cycle. The component is preventively maintained whenever T time units

have paésed since the last maintenance action. This event is called a
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preventive maintenance cycle. The stochastic process consists of randomly
cccurring failure cycles and preventive maintenance cycles. Figure 3.1 does
not imply an ordering in the occurrence of failure and preventive maintenance
cycles. The occurrence of these cycles is completely random.

Failure repairs and preventive maintenance actions are perfect; thus at
the completion of a failure repair or preventive maintenance action, the
component is considered to be as good as new. At these points in time we
have component renewal and thus have a stochastic process exhibiting
renewal points. At these points the stochastic process renews itself and
probabilistically repeats.

The notation used in this research is shown below. The symbol, =, is
read as "is defined as".

Notation:

f1(t) = known component lifetime density

Fy(t) = known component lifetime distribution, [} f; () dt

R (t) = known component survivor function, 1 — Fr(¢)

g.(t) = known repair time density after component failure

g,(t) = known preventive maintenance time density

T = age replacement preventive maintenance period.

The stochastic processes governing the component's lifetime, the time
required to effect repair after a component failure and the time required to
carry out a preventive maintenance action are considered to be governed by

known probability density functions, which are all unique and independent
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functions. Furthermore, it is assumed these probability density functions are

integrable in closed form to obtain their respective distribution functions.

3.2 Problem Discussion

As stated earlier, past research has concentrated on finding an optimal
replacement period, T,_, for component use over an infinite time horizon. This
optimal replacement period maximizes the limiting availability of the
component. In this research, the availability function, A(t), is defined to be the

probability the component operates at time ¢. The limiting availability, A, is
defined to be lim A(¢).

t—o0

An infinite time horizon for the component's expected life cycle is not
realistic. Realistically, a component is used over a prescribed time period. For
a finite component life cycle, the average availability over the time period may
be a more appropriate measure to be maximized. The average availability,

Aag(T), is defined as

Agg(1) = (1) [T A(t)dt . (3.1)

Finding a value for the age replacement period, T, that maximizes Ag(7)

requires an expression for the availability function, A(t).
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3.3 Development of the Availability Function

A notable feature of the stochastic process under consideration is the
unique probability density functions representing the time required for repair
(after component failure) and the time required for preventive maintenance
after T time units have passed since the last maintenance action. Previous
results only consider the expected values of these times since the analysis is
for an infinite time horizon (t-c0). For finite time horizons, the nature of the
probability dehsity functions governing these respective service times must be
taken into account. |

To accommodate tHis, a renewal theory approach is taken to find the
availability function for the specified stochastic process. This approach is
based upon Laplace transform theqry as well as the application of conditional
probability theory. The result of the initial analysis is the Laplace transform of

the availability function, A*(s), which is defined as
A'(s) = [0 (e7t) A(t) dt . (3.2)

The availability function, A(t), may be found by taking the inverse Laplace
transform of A™(s). It is important to realize that throughout this development,
T, the age replacement preventive maintenance period, is treated as a
parameter. After inverting A* (3); we obtain the availability as a function of both

time, ¢, and the age replacement preventive maintenance period, T.
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As shown in Figure 3.1, two types of sample paths occur. The first type
of cycle shown is the “failure cyzle". In this event the component fails before T
time units have elapsed since the last repair or preventive maintenance action.
At failure, a failure service action immediately begins. The component's
operational or uptime is always less than T in this cycle. Thus, the
component's lifetime probability density function is truncated at time T.

The second type of cycle shown is the "preventive maintenance cycle".
In this event the component survives exactly T time units since the last repair
or preventive maintenance action. After the component reaches the "age" of T
the component undergoes a random repair period (preventive maintenance
action). Thus the component's operational period or uptime in this case is a
constant T time units.

The service time periods are not truncated and may range on [0,00]. In
the failure cycle, we are dealing with an operating period of ¢t < T and in the
preventive maintenance cycle we have a constant operating period of ¢ = T.
These limitations introduce special cases of the Laplace transform that
complicate our expression for the Laplace transform of the availability function,
A’(s). The following sections review pertinent properties of the Laplace

transform applicable to analyzing the age replacement preventive maintenance

policy.
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3.4 Laplace Transforms

Equation (3.2) gives the classical definition of the Laplace transform. In
some cases we may experience a truncated time périod. Specifically, the time
domain variable may have a limited range. This is true for the stochastic
process under investigation and discussed above. For example consider the
“failure cycle" and the component's lifetime probability density. Let f; () be the
non-truncated probability density function for the component's lifetime in which
t has range [0,c0]. If operating period, ¢, is now limited to the range, [0,T], then

the truncated lifetime probability density function is

£t) = % fort<T, and

0 otherwise .
The partial or truncated Laplace transform for f(t) is
. T
(s, 1) = [y et f(t)dt .

Basic Laplace transform properties include the useful convolution

theorem. The convolution of two functions, f(t)andg(?) is

FO®gt) = JEFE)glt—w)du = 2 £t —w)g(t)du,
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where the symbol, ® , represents the convolution operator. The Laplace

transform convolution theorem provides the following relationship:

ft)®@g(t) = £7'f(s) g7(s)],

where £7[ ¢ ] is the inverse Laplace transform of the argument within the
brackets [97].

Further discussion of the partial Laplace transform is appropriate. Due
to the limited operating time range of the component, notably , 0 < ¢t < T, we
are forced to reconsider the limits on the Laplace transform for the truncated
lifetime density. This range limitation produces the result shown for (s, T')

above. Section 4.3 produces a significant result for the partial Laplace

transform.

3.4.1 Approximate Laplace Transforms

Many of the most useful lifetime probability distributions as well as
service time distributions do not have exact Laplace transforms. An approach
similar to the one used to approximate Laplace transform inversion is often
used. The time domain function, f(t), is expanded into a series of functions
with known, exact Laplace transforms. Thus an approximate Laplace

transform, f*(s), may be found.
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If the series of the approximate Laplace transform contains many terms,
then the complexity of the A*(s) increases. Thus, there is a trade-off between
the producing an accurate estimated Laplace transform and obtaining a
manageable expression for A™(s). Issues pertaining to the inversion of A*(s)to

obtain the time domain function, A(t) are discussed next.

3.4.2 Approximate Laplace Transform Inversion

Due to the complicated nature of the Laplace transform of the
availability function, A*(s), an exact inversion may not exist or may not be
easily obtainable. In these cases, it is necessary to construct approximations
of A*(s), to find an approximate expression for A(¢). Numerical approximation
methods have been developed. These methods are applied through the
assistance of Mathematica [96] to obtain the approximate Laplace transform
inversion of A*(s).

Conceptually these methods attempt to expand the non-invertible f'(s)
into functions of s that have exact transforms. Various methods exist for this

expansion and these methods are evaluated for use in this analysis.
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3.5 Maximizing Average Availability Over A Finite Time Horizon

After obtaining an approximate expression for A(t), the next step
attempts to obtain a value for T that maximizes the A,,,(t) through equation
(3.1). Two options are investigated. The first step involves inverting, A*(s),
the Laplace transform of the availability function. Recall that equation (3.1)
defines A,,,(t) and involves fot A(u)du. A useful property of the Laplace
transform allows the direct development of A,,,(t) through a simple
transformation of A™(s) before inversion. If f(t) is a function with

I f) f(t) dt = F(t) and Laplace transform, f*(s), then the following holds:
£ () = F(t).

Once an expression is obtained for A™(s), we simply multiply by (%) and invert
to obtain fot A(t)dt [97]. Finally, to obtain A,,,(t) we multiply the resulting
function, representing fot A(t)dt by (%). This result gives a functional
representation of A,,,(t). Once this function is obtained, optimization
operations may be performed to find values of T that maximize A,,,(t) for
specific values of .

However, the resulting function obtained for A,,,(t) may not be
differentiable or of a form that is convenient to manipulate. An alternative
method is to perform a numerical search. In this case, we would select a
specific time horizon, ¢, and perform the integration for various values of T. (It

is assumed specific values have been given to all probability density function




parameters.) Ranges for the possible values of T are first limited by the time
horizon, t. Itis evident that T < ¢, because, if T > t, then no preventive
maintenance would be performed during the time horizon period. Also the
value for T obtained for the infinite time horizon case should provide some limit
on T for the finite time horizon case. However, it is not clear whether this may
be an upper or lower bound. |

Clearly, the most interesting cases include the condition where aging is
exhibited by the component. In reliability theory, this is called increasing

fr(t)
R (t)

is strictly increasing if % >0. If

g

hazard. The hazard function, z(t) =

the component exhibits constant hazard or decreasing hazard, preventive

maintenance will adversely effect the component's availability. Under constant

dz(

hazard ( Tt)=0), no matter how long the component has survived, it is always

as good as new (exponential lifetime density function). Thus there would
never be an age at which the component is purposely brought out of operation
for a preventive maintenance action. Under strictly decreasing hazard

(% < 0), the longer the component survives the more reliable the component

becomes. Thus, it is easily seen that if the component actually becomes more
reliable with time, then preventive maintenance would adversely affect
component availability. If we consider how the probability of failure changes
with time, we will find it actually decreases the longer the component survives.
Some references term this probability of failure the “force of mortality" or "age-
specific failure rate" [26]. For components with strictly increasing hazard, the

force of mortality increases as the component ages; for components with
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constant hazard the force of mortality remains constant as the component
ages, for components with strictly decreasing hazard, the force of mortality
decreases as the component ages.

Additionally, the stochastic nature of the failure repair time and the
preventive maintenance action time must be considered. In this analysis, we
consider the case in which the failure repair time distribution is stochastically
greater than the preventive maintenance time distribution. A random variable
X is stochastically greater than another random variable Y if the following is
true:

Prob[X > z] > Prob[Y > 2], forall z,
or equivalently,

Fx(z) < Gy(z), forall z,

where Fx(u) and Gy (u) are the cumulative density functions for the random
variables, X and Y, respectively (see p.78 of [95]). Logically, it is easily
argued that if this condition does not exist, then preventive maintenance will
adversely affect the availability of the component. If the preventive
maintenance action time distribution were stochastically greater than or equal
to the failure repair time distribution, the option would be to let T-oo0, and thus
perform no preventive maintenance. In this case, the component is only
repaired/replaced upon failure. Thus the important conditions to be analyzed
include component lifetime distributions with strictly increasing hazard and
repair time distributions that are stochastically greater than preventive

maintenance action time distributions.
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Another point needs to be addressed concerning repair and preventive
maintenance time distributions. Only distributions from the same families are
considered here. For example, if the failure repair distribution is modeled as
exponential, then the preventive maintenance time distribution is also modeled
as exponential. Analysis considering distributions with shape parameters (i.e.,
Weibull) use the same shape parameter for both distributions. In these cases,
only distributions with strictly increasing hazard are considered. Repair time
distributions exhibiting these characteristics are interpreted as follows: given
that a repair task has taken t time units, the probability of finishing the task in

the next instant of time increases as t increases.

3.6 Summary of Analvtical Approach

The stochastic process shown in Figure 3.1 is analyzed as follows.
First, a renewal theory based model is developed. The objective of this model
is to evaluate the availability of the system or component. Expressions for the
availability of the component or system are developed. These expressions
require the evaluation of the process renewal density, m(t), and/or the
probability density function for the time between renewals, h(t). The Laplace
transform is used to find the convolutions of the probability density functions.

Once the Laplace transform of the availability function, A*(s), has been

developed, it must be inverted. Numerical inversion packages are investigated
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for application to this analysis. Also methods to invert functions not having an
exact closed-form Laplace transform are investigated.

These Laplace transform and inversion methodologies are applied to
specific cases. These cases include an all exponential case for validafion and
a Weibull lifetime density with exponentially distributed repair times and
preventive maintenance times. In all cases, the distributions are unique and
independent.

The following ratios are established for this analysis:

— Menn Lifetime
p= Mean Failure Repair Time

Mean Failure Repair Time
Mean P.M . Action Time

6

Various values of p and é are placed in the model and evaluated. Typical
values of p range from two up to ten thousand while values of § range from two
up to ten. Lower values of p are expected to provide more noticeable changes
in the average availability as T is changed. This is easily understood by noting
that the lower the value of p, the longer the repair and preventive maintenance
periods are in relation to the operative lifetime. Thus we would expect the
average availability to be less for lower values of p given all other parameters
are held constant. The values obtained for T for finite time horizons are

compared to the values obtained for T for infinite time horizons.




The infinite time horizon values also allow the model to be evaluated
and partially validated for large values of t. Since the tlim Agg(t) = tlim A(),
—00 —00

we may take a large time horizon and evaluate the average availability at the
value of T found from the infinite time horizon and compare it to the limiting
availability obtained from the infinite time horizon model. The model is also

checked at very small values of time where the availability of the model should

be close to unity.




CHAPTER 4

MODEL DEVELOPMENT

4.1 Component Availability

Barlow and Proschan [7] define the availability function, A(t), as the
probability that a component is functioning at time ¢. They develop the integral
equation for the availability function of an entity modeled by an alternating
renewal process. This process is the repair upon component failure case in
which no preventive maintenance is performed (T—o0). The availability

equation for the repair upon failure (alternating renewal) process is
A(t) = Rr(t) + fy Ri(t — w) m(u) du , (4.1)

where R, (t)is the component's survivor function (1-F(¢)) and m(t) is the
renewal density function[7]. This expression for the availability as a function of
time, t, may be interpreted as follows: the probability the component is
functioning at time t is equal to the probability that the unit has not failed since

the time the component was put into service (represented by the Ry (t) term)
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plus the probability that a renewal occurred at time u, (represented by the m(u)
term) and no component failure occurred in the remaining time period
(represented by the Ry (t — u) term). The integral sums the probabilities of

these possible events over the time interval [0,¢].

4 1.1 Laplace Transform of the Availability Integral Equation for the

Repair Upon Failure Case

Equation (4.1) gives an integral expression for finding the availability of
a component that is repaired upon failure. This equation may be solved by
taking the Laplace transform of both sides. Before proceeding, recognize that
the second term on the right-hand side of equation (4.1) is a convolution of the
component survivor function and the renewal density function of the process.
This convolution may be found by taking the inverse Laplace transform of the
product of the Laplace transforms of the survivor function and the renewal

density (Tierney, p.251,[97]). This relationship is
Ri(t) ®m(t) = fot R(t —u)m(u)du = £ R} (s) m*(s)],

where f*(s) = £[f(t)] = [y e °' f(t)dt. Using this relationship and taking the

Laplace transform of both sides of equation (4.1) we obtain

A*(s) = Ri(s) + (Rp(s) m*(s)) -




Factoring the Rj (s), we obtain
A*(s) = R;(s) (1 +m"(s)) . (4.2)

The renewal density, m(t) is defined by Cox [26] and Barlow and Proschan [7]
as the sum of the n-fold convolutions of the probability density function for the
time between renewals, h(t). Proofs may be found in the references above as

well as in Ross, p. 297 [101]. This relationship is

m(t) = i} (h@)}" (4.3)

where {k(t)}" is the n-fold convolution of h(t). By taking the Laplace transform
of both sides of equation (4.3) , Cox [26] (p.54) has shown a simplification of

this infinite sum as

m) = R (4.4)

where in this case (k*(s))" is h*(s) raised to the ntt power. Barlow and

Proschan [7] (p.166) reduce equation (4.4) to

* h’K S
m*(s) = l—h('()s) . (4.5)




Substituting this result into equation (4.2), the following is obtained.

* * h's
A*(s) = Ri(s) (1 + #)

Simplifying, the desired result is

A*(s) = l%f—()-) . (4.6)
Recall that R} (s) is the Laplace transform of the component's survivor function
and that h*(s) is the Laplace transform of the probability density function for the
time between renewals in the process. The main significance and advantage
of equation (4.6) is that the Laplace transform expression for the component
availability function does not require the Laplace transform of the renewal

density function, m*(s).

4.2 _The Availability Function for a Component Age Replacement

Preventive Maintenance Policy

This development begins by breaking the time scale into two intervals.
The first includes the interval where the availability function of the component
is desired for t < T, where ¢ is the time variable and T is the age replacement
period. Recall that the component is preventively maintained whenever T time

units pass since the last maintenance action, whether failure repair or
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preventive maintenance was last performed The second interval considers
t>T.

Fort < T, a component repair/replacement due to preventive
maintenance will not have occurred. All repair/replacements during this time
interval are due to component failure. Thus, for ¢t < T, a repair upon failure
process (alternating renewal) is experienced and the availability function as in

equation (4.1) is expressed as
A(t) = Rp(t) + fot Ri(t—u)m(u)du, fort<T.

Fort > T, component renewal may occur due to component failure or by
preventive maintenance. In this case, the farthest point back in time a renewal
may occur from time ¢, is t — T time units. This condition holds since an age
replacement policy of T time units is in place. Thus, our time interval is limited

to [t — T,t]. The expression for the availability function for t > T is
A) = [\ Ryt —w)m(u)du,  for t>T. (4.7)

Equation (4.7) may be interpreted as follows: for t > T, the probability that the
component functions at time ¢, A(t), is equal to the probability that a renewal
occurs at time u (represented by m(u)) and the component survives the
remaining period of time (represented by R;(t — u)). The renewals, which
occur due to component failure or scheduled preventive maintenance, may

occur continuously in time during the interval [t — T, ¢]. Only this time interval
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is of interest in the case ¢ > T, since the longest time that may elapse after a
renewal is T time units. This particular event has a renewal (preventive
maintenance in this case) occurring at time t — T and no failures in the
remaining period of time.

Summarizing, the availability function for a component age replacement

preventive maintenance policy is

Ri(t)+[fy Ri(t-uw)m(u)du, fort<T,
(t) = { (4.8)
i)

t_T Ry (t—u) m(u)du, fort>T.

4.3 Laplace Transform for the Availability Function for a Component

Age Replacement Preventive Maintenance Policy

The following development shows the construction of the Laplace
transform of the availability function, A(t), stated in equation (4.8). The proof
is started by noting the definition of the Laplace transform for the availability

function is

A*(s) = [ et A(t)d
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Applying (4.8) to this relationship, the following is obtained:

A*(s) = ( N e"‘(RL(t) + [ERL(t —u)m(w) du)dt)

" (f{-x’ e—st(ftt_T R (t — u)m(u) du)dt>

= [T et Ry(t)dt+ [ e* ( JERL(t — w)m(u) du) dt

+ [ et (ftt_T Rr(t — u)m(u) du) dt
= OT e 'Ry (t)dt + fonot e *' Ry (t — u) m(u) du dt

+f1?°ftt_-|- e *' Ry (t — u)m(u)dudt .

Changing the order of integration on the last two terms involving the double

integrals, the following is obtained:

A*(s) = [y et Rp(t)dt+ [y [ e ! Ry(t — u) m(u)dt du

+Jo ST e Rt — wymu) dedu+ J7° [ e Ry (¢ — ) m(u) di du

= [T et Ry(t)dt+ [y m(u) [] et Ry (t — u) dt du

+ fon(u) fTTH e "' Ry(t —u)dtdu+ [{m(u) fu”u e *'Ry(t — u)dtdu.
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obtained:

A*(s) = fOT e Rp(t)dt + fon(“) foT_

+ fOTm(u) f'IT—u

= fOTe_”RL(t) dt + fOTe‘S"m(u) fOT—ue

= [letR(t)dt + [y e

+fre
A (s)

= fy e Ru(tydt+ ((fie

By definition the following holds:

= [Te~st f(t) at

Thus, the following holds:
Ri(s, T)=
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e Wt Rr(y)dydu + [7"m

+fT “Um(u) fTT_u e *Y Ry (y)dydu +f1?°e_“’

“m(u) foT

= [y e *m(u)du .

Jy et R (t) dt

‘e W) Rr(y) dydu

Y Ri(y) dydu

“m(u) fy

*“m(u) fOT e *YRr(y)dydu

**m(u) du) (j},T e *YRr(y) dy)) .

Performing a change of variable by substituting y = ¢ — u, the following is

T—S u
w) fy e Ry(y) dydu

e *Y R (y)dydu

e *Y Ry (y) dydu

(4.9)

Define the partial or truncated Laplace transform of a function, f(t), as

(4.10)




Using this notation, equation (4.9) becomes the following:
4(s) = Ry(s, T) + (m"(s) + Ri(s, 7))

A*(s) = Ry (s, T)(l + m*(s)) . (4.11)

Substituting the results of equation (4.5) into (4.11) the following is obtained:

b

A(s) = Ri(s, T) (1 + 555) |

Simplifying, the desired result is

vy RisT)
A’(s) = lﬁh'(s)

(4.12)
Equation (4.12) gives the Laplace transform of the availability function for a
component age replacement preventive maintenance policy. In this form, it
does not require the Laplace transform of the renewal density. It depends on
the partial Laplace transform of the component's survivor function and the
Laplace transform of the probability density function for the time between
renewals for the referenced stochastic process.

It is assumed that the distribution function for the component's lifetime is

known and therefore the survivor function, Ry (t), equivalent to (1-F(¢)) is also
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known. Also, the probability density functions for the time to complete a repair
due to component failure as well as the time to complete a preventive
maintenance action are known. However, the probability density function for
the time between renewals, referred to as h(t), is not known. A renewal theory
approach is applied to develop the Laplace transform of the probability density

function for the time between renewals.

4.4 Laplace Transform for the Time Between Renewals

The notation used in this development is first presented in Section 3.1
and for convenience is reiterated below. The stochastic process under

consideration is depicted by Figure 3.1 in Section 3.1.

Notation:
f1(t) = known component lifetime density
Fp(t) = known component lifetime distribution, fot fr(t)dt
R (t) = known component survivor function, 1 — Fy(t)
g.(t) = known repair time density after component failure
gp(t) = known preventive maintenance time density
T = age replacement preventive maintenance period, i.e. if a
component survives T time units then it is preventively

maintained.
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The following assumptions are made concerning this stochastic process:

(1) All probability densities (lifetime, failure repair, and preventive
maintenance action) are known or may be estimated from available data.

(2) A single component is modeled and is considered to be
continuously demanded when available. If the component is not continuously
demanded, then it continues to age according to the lifetime density during
periods of availability whether demanded or not.

(3) Repairs as a result of component failure and preventive
maintenance actions are perfect. At their completion, the component is "as
good as new" and thus these points are renewal points in the process. At the
beginning of each cycle, the component exhibits identical probabilistic
behavior as a "brand new" component.

(4) Upon completion of a repair due to component failure or a
preventive maintenance action, the component is immediately placed back into
operation.

(5) Upon completion of a repair due to component failure or a
preventive maintenance action, the time counter for age replacement
preventive maintenance policy is reset to zero.

Two types of events or cycles occur in this stochastic process. The first
is termed a "failure cycle". In this event, the component fails before time T and
undergoes a stochastic repair period subject to the probability density, g, (2).
The second event is termed a "préventive maintenance cycle". In this event,

the component survives until time T and then undergoes a stochastic

preventive maintenance period subject to the probability density, g,(t). To
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develop the probability density function for the time between renewals in this
process, an analysis of each cycle is first performed. The Laplace transform
for the probability density function of the time between renewals within each
cycle is developed. Then, by conditioning on the time of component failure, an
expression for the Laplace transform for the time between renewals, h(t), is

developed.

4.4.1 Failure Cycle

In this event, the component fails before time T. Thus, if ¢ is the
continuous time variable, then t < T. Recall that we assume that the
component lifetime density function is known. However, in this cycle the
lifetime density function is truncated at time T. This requires the component
lifetime density function, f;(t), to be normalized by the factor, F;(T). In fact,

F(T) is the probability that the component fails before time T. The truncated

lifetime density function is ;L% fort < T and 0otherwise. Define the

probability density function for the time between renewals in the failure cycle
as hy(t). This density function, h(t), is the convolution of the truncated lifetime

Jut)

density function, £~ FoT)

and the failure repair time probability density function,

g.(t). This is expressed mathematically as

h(t) = (£5) ® o) | (4.13)
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where the convolution operator is designated by the symbol, ® . Taking the
Laplace transform of both sides of equation (4.13) and applying the

convolution theorem for truncated Laplace transforms yields the following:
* T - t 00 _g
h(s) = (fo et I%E—T))dt) (fo e*lg (t) dt)
* T -3 f(t *
hy(s) = (Jo e % dt) (a:(@)

et fuyat) (a6s) -

* — 1
hy{s) = Fu(m) (

Note that the Laplace transform of the truncated lifetime density is also
truncated at T. This is reflected in the upper limit of the integral since the
interval for ¢ is [ 0,T ]in this cycle. The component fails before T time units

have elapsed.

4.4.2 Preventive Maintenance Cycle

In this event, the component survives until time T. Thus, if ¢ is the
continuous time variable, then ¢ = T. In this cycle the operation time of the
component is a constant time period equal to T time units. Probabillistically,
this constant time period may be treated as a Dirac Delta function (or Unit
Impulse function) for the probability density function. This function is

designated, 6(t — a) and has a singularity of infinite value at t = a and is equal
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to zero at all other values of . The Dirac Delta function for this constant time

period, 6(t — V), has the following properties ([102], pp. 8-9):

(1) [;76¢-T)ydt =1
(2) [;76(t—T)G(t)dt = G(T) for any continuous function.

Property 1 gives the Dirac Delta function the primary characteristic of a
probability density function. Property 2 assists in taking the Laplace transform
of the Dirac Delta function. The Laplace transform for the Dirac Delta function

for this constant time period is

EN6t—T)] = [;76(t—T)e *t dt
£t -T)=e>T .

Define the probability density function for the time between renewals in the
preventive maintenance cycle as h,(t). This density function is the convolution

of the Dirac Delta function, 6(t — T), and the preventive maintenance time

probability density function, g,(t). This is expressed mathematically in the

following:

B(t) = (6¢-T)) ® g,(t), (4.14)




where the convolutior: operator is designated by the symbol, ® . Taking the
Laplace transform of both sides of equation (4.14) and applying the

convolution theorem for Laplace transforms yields
R3(s) = ( J&ests(t—T) dt) ( et g, (1) dt)

hi(s) =T (g;(s)) . (4.15)

4.4.3 Conditioning

To obtain the complete expression for the Laplace transform of the
probability density function for the time between renewals, h'(s), for the
stochastic process comprised of randomly occurring failure cycles and
preventive maintenance cycles, we condition on the length of time the
component has been in operation at the time of component failure (refer to

Figure 3.1). Specifically, two conditions shall be used. These are:

(1) Component failure before the component has been in operation for

T time units since the last service action (toper < T, Where toper is elapsed time
of component operation since the last service action). A service action is

either a repair due to component failure or a preventive maintenance action.
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(2) Component survival until the component has been in operation T

time units since the last service action (toper > T, where toper iS €lapsed time of
component operation since the last service action).
The h’(s) may be found by using the following conditional probability

statement:;

h(s) = h*(s)

Prob{teper < T} + h*(s) ot Prob{toper > T} .

Loper< per =

Under the condition, toper < T, the stochastic process experiences a failure

cycle event. Thus, h*(s)lt , is as shown in equation (4.13). Under the
oper<

condition, t.er > T, the stochastic process experiences a preventive
maintenance cycle event. Thus, h*(s)‘ , is as shown in equation (4.14).

toper>T
The probability that the component fails before it operates T time units,
Prob{teper < T}, is F(T). The probability that the component survives at least
T time units, Prob{teper > T}, is R.(T) = 1 — F1(T). Substituting these into
equation (4.15), the following expression for the Laplace transform of the time

between renewals for the referenced stochastic process is

h(s) = (7w (Jy e £t dt) (6:(9)) Fo(D) + (7 (g3()) Re(T))
B (s) = £i(s, ) g3(s) + T Ro(T) g3(s) (4.16)

where f; (s, T) is the partial Laplace transform of f,(¢) as defined by equation

(4.10).
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4.5 Availability Model Conclusion

The availalbility medel for the age replacement preventive maintenance
is complete. An expression is given for the Laplace transform of the availability
function in terms of the Laplace transforms of the component's survivor
function and the probability density function for the time between renewals.
Restated, A*(s)is

_ Ri(sT)

A(8)= To5 e (4.17)

where h*(s) is shown in equation (4.16).

4.5.1 Model Issues

Three main issues affect the use of this model to obtain an expression
for A(t). These issues include finding partial (truncated) and normal Laplace
transforms, finding an estimated inverse Laplace transform for A*(s) and the
numerical integration of A(¢) to find the value of T that maximizes the average

availability of a time interval [0, ¢].
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4.5.1.1 Partial and Normal Laplace Transforms

The first issue involves finding the partial Laplace transforms of the
lifetime density, f; (s, T) and the partial Laplace transform of the component's
survivor function, Rz(s, T). For the most interesting types of lifetime densities
(i.e., those exhibiting the ability to model increasing hazard or "component
aging"), special power expansion techniques are employed. The lifetime

density to be used in this case is the Weibull density function defined [95] as
1 _—atf
fi(t) = aBt’le™"  t >0,
and Fr(t)y=1- e""tﬂ,

where a is the scale parameter and g is the shape parameter. For values of
G > 1, the Weibull lifetime density exhibits strictly increasing hazard.

Consider the Rayleigh density function which is a special case of the
Weibull with 5 = 2. In this case, the hazard function, z(t), is defined as
follows:

i
2(t) = TJ;-LL(—(Z)S =2at.

Therefore, for the Rayleigh lifetime density function, the hazard function is

strictly increasing in a linear fashion. Practically, this family of distributions

models aging components but does not model a "wear out” period very well
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since the hazard function increases at same rate over all time. Wear out
periods may be modeled using Weibull lifetime densities with values of 8 > 2.
In these cases, the force of component mortality increases exponentially with
time. Analysis here proceeds with the Rayleigh distribution and the application
of power series expansions to find f;(s, T) and R} (s, T). These expansions
are truncated to provide estimates for the preceding terms.

In the event that the Weibull distribution is used to model the repair time
and preventive maintenance time distributions, a similar approach is followed.
The difference in this case is that these service times are not truncated. Thus
we must find an estimate for the full Laplace transform. Power series

expansions may be applied to find g (¢) and g,(?). If successful, these

expansion are truncated to provide estimates for the preceding terms.

4.5.1.2 Laplace Transform Inversion Estimation

The complexity of the expression obtained for A*(s) will increase as
more realistic distributions are used for the component's lifetime density as
well as the repair and preventive maintenance action times. Due to this
complexity, it is unlikely that an exact inversion of A*(s) may be accomplished.
Therefore methods to estimate the time domain function, A(t), are
investigated. One family of methods provides an estimate of the value of the
time domain function, A(t), at specific points in time from the A*(s). One

approach would be to iteratively run a numerical inversion technique over




many values of time and then fit a function to the values to obtain an estimate
of A(t). Unfortunately, this methodology would become very time consuming
and cumbersome. However, Cheng et al [66] have implemented several of the
well known Laplace transform numerical inversion techniques in Mathematica.
Their focus is on the numerical solution of linear partial differential equations
relating to groundwater and reservoir engineering applications. Mathematica
is used to compile numerical resuits for functions with known Laplace inverses
for comparison purposes. Due to the analytical capabilities of Mathematica,
this analysis uses these inversion estimation techniques in a somewhat
different manner. In the analysis presented here, the time parameter, t, is left
as a parameter in the inversion techniques. The result from Mathematica is an
estimate of the time domain function, A(t), which is an extension from a single

estimated value of the time domain function at a specific time, t¢.

4.5.1.3 Numerical Integration Search to Find Values of T to

Maximize Average Availability

After obtaining an estimate of A(t), a numerical integration search is
attempted for a specific value of ¢, to find the value of T that maximizes
average availability over the time interval [0, ¢]. This numerical search is

performed in Mathematica. The results are compared to the values of T for the

infinite time horizon case.




Additionally, methods for obtaining a direct functional form of the

average availability with respect to time are investigated.

|
|
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CHAPTER 5

THE EXPONENTIAL CASE

5.1 Exponential Case Description

In this case, the component's lifetime as well as the time required to
perform repair upon component failure and the time required to perform
preventive maintenance on the component are all considered to have
exponential probability density functions (pdf). These exponential density
functions are assumed to be unique and independent of each other. These
functions are defined as

| fr(t) = Ae (the component lifetime pdf),
g,(t) = p e Pt (the repair time pdf), and

t

9,(t) = p, et (the preventive maintenance time pdf).

This particular case is selected to provide validation examples for the

proposed model. The hazard function, z(t), is defined as follows [7]:

_ A0
2(t) = 249
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For the exponential lifetime density, z(t) is equal to A, a constant. Thus, as the
component ages, the hazard remains constant. Therefore the "memoryless"
property of the exponential pdf applies. Given that the component survives ¢
time units, the probability that the component fails in the next instant of time
remains constant for all . In essence, the component does not exhibit aging
since whether it has survived one time unit or one-hundred time units, the
probability of it failing in the next instant of time is the same. Thus, given the
component has survived ¢t time units, it is always as good as new. Barlow and
Proschan [7] term this constant hazard.

Logically, it is easy to argue that if the component's lifetime is modeled
in this manner then preventive maintenance should never be performed.
There would not exist a component age at which one would desire to purposely
remove the component from operation to perform preventive maintenance.
Recall that given the component has survived t time units, it is as good as new.
Thus for the exponential case, the replacement period maximizing average
availability should be infinity or in other words, no preventive maintenance
should be performed. In this case, the process simplifies into an alternating
renewal process where the component is repaired upon failure.

The model developed in Chapter 4 is used to analyze the exponential
case described above. This case offers a method to assist in validating the

model since the correct outcome is known.
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5.2 Development of the Availability Function for the Exponential

Case

Recalling equations (4.16) and (4.17) from Sections 4.4.3 and 4.5

respectively, the Laplace transform of the availability function, A*(s), is

A*(s) = Ry(s,T)

1-h(s)
 where h*(s) = f1(s, T) g:(s) + e TRL(T) g}(s)
and FaT)=fe*Tft)dt .

Applying these equations to the referenced exponential case, the following is
obtained:

fOTe'St e™ dt
1— ( (fTet et dt) g (T _”P_)

A*(s) =

Stip

1 l_e—T(s+A)
A*(s) = 1_( o _A_(SEAI)_(e-T(sH)) +)#p (e-T(s+A)))

s+ kp

A*(s) = (kyts) (p+s) = (p+s) (p+s) eTEH

. (6.1
(Ats) (pr+s) (#p+s)-/\.ur(#p+5)+(/\ﬂr(#pﬂ)—up(z\ﬂ) (ﬂr+3)) e Tty G-4)
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5.3 Laplace Transform Inversion to Obtain A(t)

Inversion of this function shown in equation (5.1) to the time domain is
not simple. One simplifying condition is to note that the numerator has two
terms that only differ by a factor of e 7**»_ This allows the inversion to be
broken down into the inversion of two terms. This factor e 7**})may be stated

-Ts e-T/\

ase , in which, e, is a constant. A useful property of inverting Laplace

transforms (see [98]) is

EleTe™f(5)] = ™ (Unitsteplt — T]) F(t —T), (5.2)
where F(u) = £71[f(s)]
and Unitstep[t — T] = { i ;j;g .

This allows the inversion to proceed with only the first term and then use the
rules shown above to obtain the inverse of the second term. We then sum the
results to obtain the A(t).

The work now lies with inverting the function shown below.

-1 (pts) (p+s)
(AFS) (rt8) (1y5)= Mty bty +8)+ (Mt (11, 7+5) =y (Ats) (i, +3)

) e-T(s+4) ] (53)
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Using Mathematica (the Apart function) this term may be broken down into the

sum of the following fractions:

£-1( s((ur+3) ) i

setA+s)

-1 (/"r+3)(ﬂrﬂp_ﬂr’\+ﬂp’\+/‘ps) (54)
(bt A8) (e A= oty = A= 5+ (€M T (ot p A+ (p 1+ 2 ) s+52) '

The first term in this sum may be inverted exactly and is

-1 (p+s) M A -t(p+A)
£ ( s(pe-tA+s) ) R 2 + mA € :

The time domain function for the first term in equation (5.4) is identical to the
time domain function for the alternating renewal process where repair upon
failure is executed (i.e. preventive maintenance is not performed). The
problem now is to invert the second term of the summation shown in equation
(5.4). Note that this term in equation (5.4), which is designated as g,(s), may

be represented as
g2(s) = %

Since ¢(s) is a second order polynomial with respect to s, and of the form

~c1 + 28 + c38°, we may apply standard rules for inverting the Laplace
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transform. If Gy(t) represents the £1{g,(s)} and P(t) represents the £{ ﬁ}

[97], we obtain

Gs(t) = e P(t) + & 4IP(O)] + 3 @P(H].  (55)

This decomposition process leaves the task of inverting . However, this

1
p(s)
term is successfully inverted exactly. An estimate of the inverted function was
obtained using a numerical inversion package obtained from Wolfram

Research, Inc., distributors of Mathematica.

5.3.1 Laplace Transform Inversion Estimation

A numerical inversion package for Mathematica written by Cheng, et al,

[66] is implemented. The Stehfest method [67 and 98] is used to invert the

(;(ls—)) term referenced in the previous section. The Stehfest method for

approximating inverse Laplace transforms is designed to provide an estimate
of the time domain function at a specific value of time from the Laplace
transform function. For this reason, the technique is termed a "numerical"
inversion package. The power of Mathematica allows the time specification to

be left as a parameter. This allows Mathematica to analytically solve for the
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time domain function and hence give us an estimate of the time domain

function, A(t).

The Stehfest method [67 and 98] obtains an estimate of the time domain

function by defining the time domain function, F(t), as

N
F(t) =12 21 e fr(2E),

where EFV)] = f'(u) and

min(n,% N
s £ (28!
cn = (-1)""2 —~  (FoR)K (—1)! (n—k)! (2k—n)!
k=1%"]

Tests were performed within Mathematica to verify the validity of the
Stehfest method. The tests consisted of performing the numerical inversion for
a specific value of time for a function, f*(s). The resuit of this test provided
time domain values for F(t) (note that £'[f*(s)] = F(¢)) . The next test
consisted of performing the numerical inversion with the time specification left
as the parameter, t. The result was an estimate of the function, F(t) (as a
function of time). The same values used in the previous test were evaluated
by the estimated time domain function and were found to be the same as those
obtained by direct numerical inversion. The test was successful and the

"numerical" inversion package was implemented to provide an estimate of the
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time domain function. The results of these tests appear in Appendix 1. This
appendix provides the annotated Mathematica input statements and output

used in obtaining these results.

Using the relationship shown in equation (5.2), an estimate of the
inversion of the first term in equation (5.1) shown in equation (5.2) is obtained.
Finally an estimate of the availability function, A(t), is obtained by applying
equation (5.2). Appendix 2 shows the Mathematica statements used to find
this estimate of A(t) for the exponential case. This estimated function is long
and complicated and is left as a function in Mathematica. If desired, the
estimated function obtained from the Stehfest method may be observed within
Mathematica. Note that in these results, T, the age replacement period is
included as a parameter. Thus the estimated availability function obtained,
A(t,T), is actually a function of both continuous time, ¢ and the age

replacement period, T.

5.4 Model Validation

Two methods are used to validate the estimated availability function,
A(t), obtained as detailed in Section 5.3.1. The first method involves

evaluating the value of the availability function at very small values of time.

Since the estimated function contains factors of (%), evaluating t = 0 is not
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possible. For the case where A=1., p = 1000. and 6 = 5., the estimated
availability function is evaluated for ¢ = 0.001 for various values of T, the age
replacement policy. In all cases the results are very close to unity. For
example, with T = 1., the function evaluated at ¢t = 0.001 was 0.999363. Also
for T=10., the function evaluated at ¢t = 0.00000001 was 0.99999999. These
values are sufficiently close to unity and provide availability model validation

for small values of ¢.

The second technique used for validating the model is evaluation of the
availability for large values of T at large values of continuous time, ¢. In this
case, as T—o0, the stochastic process becomes a repair upon component
failure, i.e. no preventive maintenance is accomplished. For evaluating this
case, we set A=1., p =1000., 6 = 5. and T = 1000. The estimated availability
function is evaluated at ¢t = 500. The value obtained is A(t = 500.) = 0.999001.

The limiting availability for this case is given by

A=limA({) ,

t—o00

and for the repair upon failure case (alternating renewal process) is equivalent

to

. Ellifetime]
" E[lifetime]+E[repair time)

A

1.
A= 13000l = 0.999001
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Thus for the values shown above the model estimates the limiting availability

for the repair upon failure only process exactly.

These validation methods basically show the validity of the model at the
end points. The first technique evaluated the model as -0 while the second
technique considered the case where both t and T grew large. A major
implication of this result is the development of an expression for the availability
function for the component in this process. This availability function, A(¢, T), is
a function of both time, t and the replacement‘ period, T. The literature search
did not show this result in past research. Thus a method to evaluate the
model's validity between the extremes discussed above has not been devised.
However, the validation results presented are encouraging and analysis of the

availability model will proceed.

5.5 Maximizing Average Availability Over Finite Time Intervals

The average availability, Aq,.(7), is defined as [7]

Agg(T) = L[] A(t)dt .

T
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The desired result is to find a value for T, the age replacement policy, that
maximizes the average availability over a finite time horizon, r. Two methods
to find the value of T are detailed in Chapter 3. These methods were an
integral equation search method and using Laplace transform inversion rules
to obtain an analytical estimate of A,,,(7) directly. The latter method is
implemented and compared to cases in which the first method is used.
Function values correspond well and therefore the method of using Laplace

transform rules to obtain an analytical estimate of A,,,(7) is not used.

Mathematica is used to perform searches for T that maximizes the value
of Ag,,(7) for specific, finite values of 7. An iterative, "double Do loop" is
implemented through the Table function within Mathematica. The algorithm
iterates through values of finite time horizon, 7. At each value of 7, Ay, (7)
function values are calculated for several values of T. Meaningful A,,,(7)
function values only exist for the case where T < 7. The finite time horizon, T,
is the operational period of the component's lifecycle. Thus if T > 7, then no
preventive maintenance is performed. This analysis is constrained to
evaluating values of A, (7) for which T < 7. If the maximum value of A,,,(7)
occurs at T = 7, then the age replacement period is equivalent to the finite time

horizon. Therefore, no preventive maintenance would be performed.

For the exponential case, as explained earlier, no preventive
maintenance should be performed. This is true regardless of the time horizon.
An additional concern is the relationship between the mean repair time due to

failure and the mean preventive maintenance time. If the mean preventive
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maintenance time exceeds the mean repair time, Barlow and Hunter [12], have
shown that no preventive maintenance should be performed. The objective in
obtaining this result is to maximize the limiting availability. The ratio, 6, defined
to be the mean repair time divided by the mean preventive maintenance time is
always be greater than one (6 > 1). Furthermore, the ratio, p, defined to be the
mean lifetime divided by the mean repair time is characteristically large.
Values of 10 to 10° may be typical depending on the class of the component
(i.e. mechanical, electronic). For demonstration purposes, smaller values of p

are used to exaggerate values of availability for ease of analysis.

5.5.1 Exponential Model Results

The purpose of these results is to provide additional model verification.
The correct result for all values of 7, is to obtain a model result that shows the
maximum A, (7) to be attained when preventive maintenance is not
performed. It is expected that this result should be evident by A,,,(7) being
maximized when T = 7.

The following exponential model is evaluated. The mean lifetime,

= 1.; p = 2., thus the mean repair time, % = 0.5 . The ratio of mean repair

> |-

time to mean preventive maintenance time is 6 = 5. Thus, the mean

preventive maintenance time, pl = 0.1 . The results are shown below for

p

79



values of 7 between 0.5 and 5. Values of T include the upper end point. The
results are shown in Table 5.1. Observe that the maximum value of A,,,(7)
occurs at the point where T = 7. In some instances, the number of digits
shown does not reflect this maximization. However, using sixteen digit

accuracy within Mathematica reflected A,,,(7) being maximized at T = 7. This

result confirms that for the exponential case, preventive maintenance should

not be performed to maximize A,,,(7) for finite time horizons. This provides

additional evidence supporting the validity of the model.
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CHAPTER 6

THE WEIBULL - EXPONENTIAL CASE

6.1 Introduction

In this case, | examine the age replacement preventive maintenance
stochastic process with a Weibull component lifetime probability density
functicn and exponential repair and preventive maintenance (p. m.) time

probability density functions. These density functions are defined as

£t =aBt?! et (component lifetime pdf),
L

g,(t) = p et (repair time pdf),
g, (t) = p, e (preventive maintenance time pdf), and
T (age at which component receives

preventive maintenance).

The stochastic process consists of randomly occurring failure cycles and

preventive maintenance cycles. A failure cycle occurs when the component
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fails before it ages T time units. The Weibull distribution governs the random
failure of the component. Given that the component fails before time T (before
T time units have elapsed since the last service action), the component
immediately begins failure repair. This random repair period is exponentially
distributed. If the component survives T time units (since the last repair or
preventive maintenance action) then the component is immediately removed
from service and begins preventive maintenance service. The time required
for preventive maintenance is random and is exponentially distributed. The
exponential distributions modeling the preventive maintenance action and

repair times are unique and independent of each other.

6.2 Application of Model

Recalling equations (4.16) and (4.17) from Sections 4.4.3 and 4.5, the

Laplace transform of the availability function, A™(s), is
%\ _ Ri(s,T)
A'(s) = o

where h*(s) = f1(s, T) gi(s) + €T RL(T) g}(s)

and s, T = [Je T (t)dt .
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Applying these equations to the referenced Weibull-exponential case requires
the development of expressions for the partial Laplace transform for the
Weibull probability density function, f;(s, T), as well as for the Weibull survivor
function, R;(s, T). The Laplace transforms for the exponentially distributed
repair and preventive maintenénce times are not truncated since the range on
time variable in these cases is 0 < t < co. These transforms are easily

evaluated.

6.2.1 Laplace Transform of the Weibull Probability Density Function

In the form given in Section 6.1, the Laplace transform of the Weibull
probability density function may not be found. However, the Weibull pdf may
be expanded into a power series. The Laplace transform of the power series
representation of the Weibull pdf may be found. Thus, an exact Laplace
transform of the Weibull pdf is generated in the form of an infinite series.

The methodology used to obtain the Laplace transform for the Weibull
pdf is also used to find the partial Laplace transforms of the Weibull pdf and

survivor function.
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6.2.1.1 Power Series Expansion of the Weibull Probability Density
Function

Recall that the Weibull probability density function is defined as [95]
f(t) =aptite? (6.1)

Using a similar methodology as that shown by Lomnicki [99], this function may
be expanded into a power series. First, let z = ¢° and expand the exponential

term of the function as

0]

s = $ ) (e

n=0

Substituting, t° for z, equation (6.2) is obtained.

o0

e = 3 (-1 (<L) (6.2)

n=0

Substituting this MacLaurin series expansion into equation (6.1), the power

series expansion for the Weibull probability density function is

e n—1 (a" gtmA-1
fu(t) = 2%(‘1) H (ii_l)! 3 (6.3)
n=
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6.2.1.2 Laplace Transform of the Weibull Power Series Expansion

By definition, the Laplace transform of a function,. £[f(t)] is
E[f@)] = f(s) = [y e f(t)at.
Applying this to equation (6.3), the following is derived:
fi(e) =[5 et fr(t)d

) ot nf-1)
fi(s) = [T et (S WS Y ar. 64

n=1

. Mathematica is used to solve the integral in equation (6.4). The resulting
infinite series representation of the Weibull density function Laplace transform

is

fi(s) = E( 1yt 28] (6.5)

(n=1)tsn8

where I'z] is the Gamma function (Abramowitz & Stegun [100], p. 255 and

Mathematica Reference manual, [96], p. 365) and is defined as

Mle] = [Pt Deds . (6.6)
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The result shown in equation (6.5) is also useful for analyzing the age
replacement preventive maintenance stochastic process with Weibull repair
and preventive maintenance time distributions. Note that these time
distributions are not truncated and may range, 0 < t < co. However, the
immediate requirements for this analysis are the partial Laplace transforms of
the Weibull lifetime probability density function and the Weibull survivor

function. Sections 6.2.2 and 6.2.3 develop these partial transforms.

6.2.2 Partial Laplace Transform of the Weibull Lifetime Density
Function

In this case, we are concerned with the time interval for component
failure within the failure cycle. This time interval is random and is distributed
according to a Weibull probability density function. This known probability
function, as shown in equation (6.1), has range 0 < ¢t < oco. However, this time
period is always less than T time units according to our age-replacement
preventive maintenance policy. This fact is taken into consideration when the
expression for A*(s) is developed for the general case in Chapter 4. This time
truncation causes the Laplace transform to be truncatéd and is referred to as a
partial Laplace transform. Recall the partial Laplace transform we are

concerned with in general is
fi(s, T =fg et fr(®)dt . (6.7)
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Substituting the power series representation of the V/eibull probability density

function shown in equation (6.3) into equation (6.7) gives

s n—1 (" gD
fils, M= fy et (L S ) at. (6.8)

n=1

Mathematica is used to solve the integral in equation (6.8). The resulting
infinite series representation of the Weibull density function partial Laplace

transform is

xQ

Fi(s, Ty = S (-1)nt LAAnbsT] (6.9)

(n—1)1s"P
n=1

where v[a, z] is the alternative incomplete gamma function (Abramowitz and

Stegun [100], p. 260 and by Wolfram [96], p. 365) and is defined as
Ya, z] = [yt Ve tdt (6.10)

Equation (6.10) gives an exact ( as n—oo) series representation of the partial
Laplace transform of the Weibull lifetime probability density function. Practical
use of this infinite series requires truncating the infinite series to obtain a finite
representation of the Weibull pdf partial Laplace transform. This development
provides the basis for obtaining the partial Laplace transform for the Weibuli

survivor function, R (s, T). This development is presented in Section 6.2.3.
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6.2.3 Partial Laplace Transform of the Weibull Survivor Function

The survivor function for a component's lifetime, Ry (u), is defined as
the probability that the component survives at least a period of time u. This is
stated using probability notation, where u represents the length of the

component's lifeand Y is some specified period of time, as
Ri(Y)=Prob{t>Y} =1-F().
In this case, the Weibull survivor function is defined by [7]:
Ri(t) =e @t

This survivor function may be expanded into an equivalent power series by the
same method employed in Section 6.2.1.1 . The power series representation

of the Weibull survivor function is

Ry(t) = Yo (1) £ 6.11)

n!
n=0
The partial Laplace transform of the survivor function, Rj (), is
Ri(s, T)= [ e*' Ri(t)dt . (6.12)

89




Substituting the power series representation of the Weibull survivor function

shown in equation (6.11) into equation (6.12) gives

Ri(s, T) = [, e*" ( §(~1)" i ) dt . (6.13)

n!
n=0

Mathematica is used {o solve the integral in (6.13). The resulting infinite series

representation of the Weibull survivor function partial Laplace transform is

Ri(s, T)=1- Lo+ ¥ (1) el (6.14)
n=1

se () stnB+1)

Equation (6.14) gives an exact ( as n—oo) series representation of the partial
Laplace transform of the Weibull lifetime survivor function. Practical use of this
infinite series requires truncating the infinite series to obtain a finite

representation of the Weibull survivor function partial Laplace transform.

6.3 Numerical Results for the Weibull - Exponential Case

The availability model is constructed in Mathematica. The infinite series

for the partial Laplace transforms of the Weibull lifetime density, f; (s, T), and
the Weibull survivor function are truncated at 32 terms each. Then the

availability expression developed in Chapter 4 is implemented in Mathematica
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to obtain an estimate of the availability function Laplace transform, A*(s). This
transform is inverted in Mathematica using the numerical inversion package
developed by Cheng, et al [66]. The Stehfest method was chosen and
implemented for n = 6 and as described earlier is used to find an analytical
estimate of A(t, T).

A specific numerical case is used in this analysis. The lifetime, repair
and preventive maintenance densities' parameters are shown below. The
parameters for the repair and preventive maintenance densities reflect values

ofp=2.and 6 =5.

Weibull lifetime density: a = B =2, meanlife = 12.5,

1
200°
characteristic life = 14.14

Exponential repair time density: p, = 0.16, mean = 6.25

Exponential preventive maintenance density: p, = 0.8, mean = 1.25

6.3.1 Model Validation for the Weibull - Exponential Case

Three methods are employed to validate the model for A(t). First, the
estimated value of A(t) near ¢t = 0 is evaluated for several different values of T,

the age-replacement time interval. Since the model assumes the component is
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working at ¢t = 0, the value of A(t) for small values of ¢ should be approximately
equal to one regardless of the value of the age replacement policy, T (T>0).

The second method is the computation of an estimate for the limiting
availability value for the case in which T is set to the optimal age replacement
period for an infinite time horizon, T;o. Barlow and Hunter [12] develop the
analytical equations to solve for T;O and the limiting.availability, A. This
analysis is carried out by first setting T=T;o and then evaluating the average
availability, A,.4(t), for large values of time. These values should converge to
the value of A obtained analytically.

In the third method, the estimated availability function is used to
compute values of average availability for several values of T, near and
including T;o for large values of continuous time, ¢t. For large values of ¢, we
expect that the estimated availability function should produce an average

availability local maxima for T=T__.

6.3.1.1 Model ValidationResults fort~0

These values are evaluated in the estimated availability function, A(t,
T), using Mathematica, for t = 0.000001. This evaluation is performed for
values of T between 0.1 and 750. The expected results are values of
A(t = 0.000001, T) close to unity for all values of T. Table 6.1 shows the results
of this analysis. In each case, Mathematica returned a value of 1. According

to the Mathematica documentation, the default accuracy is at least sixteen
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Table 6.1 A(t=0.000001) for 0.1 < T <750

T (age replacement period)

A(t=0.000001)

0.10

0.25

0.50

0.75

1.00

2.00

5.00

10.00

20.00

50.00

100.00

200.00

500.00

750.00
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decimal places. These results support the validity of the model for small

values of time.

6.3.1.2 Validation Results for the Infinite Time Horizon

The results of this validation test are compared to the limiting
availability, A, obtained from the infinite time horizon case. This value of A
depends on the optimal age replacement period, T;o. Barlow and Hunter [12]
develop these analytical equations. T;o is found by solving the following

integral equationfor T__ (see [12]):

* ; * E[P.M.time
<z<T°°) fOTw RL(t) dt) - FL(TW) = E[Repaért[ime]-—tE[P.]M. time] (6.15)

where z(t) is the hazard function and E[ e ] is the expected value operator.

The limiting availability, A, is found by solving the following equation (see [12]):

A= 1 , — . (6.186)
1+ (E[Repazr time]—E[P.M. tzme}) 2(Ty)

These equations apply when the lifetime density function, f;(¢), has a strictly

increasing failure rate (%z(t) > 0) and the mean time required to repair the

component is greater than the mean time required to perform preventive

maintenance (E[Repair time] > E[P.M.time])[12].
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The values defined above for the component lifetime density as well as
the repair time and preventive maintenance time densities are evaluated in
equation (6.15) to find T, . Mathematica solves this equation quickly and
produces T = 7.22176. This value of T is used in equation (6.16) to obtain
A = 0.734706.

The value of T, = 7.22176 is used in the estimated availability function
to find values of the average availability , A,,,(t), for large values of t. Barlow
and Proschan [7] show that the limiting average availability is equivalent to the

limiting availability. Mathematically, this is

lim Agg(t) =lim % [JA(t)dt = A = lim A(2).

Recall that T?_ = 7.22176, for the parameter values given in Section 6.3.

This value is entered for T in the availability function in Mathematica and

Aa(t), is calculated for t = 500., 750., and 1000. These results are shown in
Table 6.2 with the difference from the limiting availability, A = 0.734706, noted

in the "error" column.

Table 6.2 Limiting Values of A,,,(?)

t Ag(t) | Error
500. | 0.737231 | 0.002525
750. | 0.736391 | 0.001685

1000. | 0.735970 | 0.001264




As expected, the error decreases as t increases. Att = 1000., the error is
approximately 1072, Given the approximations employed to develop the
estimated availability function, these values validate the performance of the

estimated function as time increases to large values.

6.3.1.3 Model Recognition of Local Maxima

In this validation test, the parameter values for lifetime, repair and

preventive maintenance densities are changed to the values shown below:

Weibull lifetime density: a = 5=, f = 2, meanlife = 12.5,

characteristic life = 14.14
Exponential repair time density: u, = 800., mean = 0.00125

Exponential preventive maintenance density: tp = 4000., mean = 0.00025

These parameter values for the lifetime, repair time and preventive
maintenance time densities reflect values of p = 10000. and 6 = 5. Recall that
pis the ratio of the mean lifetime to mean repair time and § is the ratio of the
mean repair time to mean preventive maintenance time.

These parameter values are entered in Mathematica and the average

availability at ¢t = 750. is evaluated for T = 6.722, 7.222, 7.722, and 8.222.
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Mathematica evaluates these average availabilities through numerical

integration. Table 6.3 shows the results obtained.

Table 6.3 Local Maxima for T,

T Aqyg(t = 750.)
6.722 0.9999 2778
| T., = 7.222 | 0.99992801

7.722 0.9999 2793
8.222 0.99992762

Due to the large value of p used in this validation, availability values are
very high. However, even with such a large ratio of mean lifetime to mean
repair time, the estimated availability function still produced a local maximum

atT, =7.222.

6.3.2 Availability Model Results

For the following plots, the Weibull lifetime density function is used.

Parameter values are 0‘:561& (scale parameter) and =2 (shape parameter).

The parameter values provide a mean component lifetime of approximately
12.5 and a characteristic life of 14.14. The repair time and preventive

maintenance time are modeled as exponential distributions. The mean lifetime



to mean rebair time ratio, p, is set to a value of p = 2. to accentuate the
differences in the availability values. The value of the mean repair time to
mean preventive maintenance time, 6, is set to a value of § = 5. Thus the mean
repair time is 6.25 and the mean preventive maintenance time is 1.25

In the following series of plots, the first plot represents the estimated
availability function for 0.1<¢<15. with an age replacement period of
T=7.22176. This T value is the optimal replacement period for an infinite time
horizon. Note that the function converges rather quickly to the limiting
availability value for the optimal value, T;O. This value of A is approximately,
A=0.7347.

The subsequent plots show the estimated availability function for T= 1,
3,5,6.75,12.5, 14.14, 28.28, 35, 42.4, 50., and 55. as a function of time. For

reference purposes, the T;o=7.22176 piot is included in each plot.
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Figure 6.1 Availability Plot for T, =7.22
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Figure 6.2 Availability Plots for T=1. and T=7.22

99




4 t, time
12 14

0.85¢
0.8}
0.75}
0.7t

Figure 6.3 Availability Plots for T=3. and T=7.22
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Figure 6.4 Availability Plots for T=5. and T=7.22
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Figure 6.5 Availability Plots for T=6.75 and T=7.22
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Figure 6.6 Availability Plots for T=12.5 and T=7.22
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Figure 6.7 Availability Plots for T=14.14 and T=7.22
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Figure 6.8 Availability Plots for T=28.28 and T=7.22
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Figure 6.9 Availability Plots for T=35. and T=7.22
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Figure 6.10 Availability Plots for T=42.4 and T=7.22
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Figure 6.11 Availability Plots for T=50. and T=7.22
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Figure 6.12 Availability Plots for T=55. and T=7.22
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6.3.3 Availability Model Results Discussion

Figures 6.2, 6.3 and 6.4 show an anomaly in the estimated availability
function, A(t). Note the portion of the plot that goes above a value of one for
A(t). Since the availability function, A(t), is the probability that the component
is functioning at time ¢, the maximum A(t) value is one. This error is small and
ranges from about 0.5 for an age replacement value of T=1. to about 0.025 for
an age replacement value of T=5. The error decreases as the age
replacement value, T, increases. Additionally, the error occurs later in the time
domain, ¢, as the age replacement value, T, increases. This small anomaly
occurs due to the estimated Laplace transform inversion technique employed
to estimate A(t). Recall that the methodology employed to find the availability
function, A(t), provided an exact representation of the Laplace transform of
A(t). The only estimation technique employed is the use of the Stehfest
numerical Laplace transform inversion technique. Thus, this estimated
inversion technique caused a small anomaly to occur for small values of T.

Figure 6.12 demonstrates that the estimated availability function
diverges for large values of T and large values of continuous time,t. The
limitation of the model is T < §5. This limitation occurs due to computational
limitations such as computer round-off error and floating point limitations.

The average availability, A,,,(7), for a finite time period 7, may be

evaluated graphically from Figures 6.1 through 6.11. Recall that A,,,(7) is

Ay (1) = % fOT Agg(u) du .
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For a finite time period, 7, A,.,(7) may be graphically evaluated by considering
the area under the availability function, A(t), curve betweent =0and ¢t =,
where t is the continuous time variable. Furthermore, if a comparison of the
Aag(T) for two different functions shown on the same plot is desired, one may
simply consider only the intersection of the areas bounded by both curves. For
example consider a finite time period of 10 time units and refer to Figure 6.11.
Note that for the time period from ¢ = 0. to ¢ = 2. that the curve corresponding
to T.,= 7.22 bounds the area under the curve for T=50. Since the T, =7.22
curve bounds a larger area over this time period, T;0= 7.22 has a larger
average availability than T=50. Now consider the time period from ¢ = 2. to

t = 10. Note that in this case, the T=50. curve bounds the T, =7.22 curve.
Thus for this time interval, T=50. provides a larger average availability value
than T, =7.22 since the area under its curve is greater. In fact if we consider
the time period t = 0. to ¢t = 10., it is graphically apparent from Figure 6.11, that
the T=50. curve bounds more area than the T.,=7.22 curve. Thus the age
replacement value of T=50. provides a larger value of A,,,(7 = 10.) than the
optimal infinite time horizon value, T, =7.22. This result is extended further in

Chapter 7.
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Chapter 7

Conclusion and Accomplishments

7.1 Availability Model Performance

The research methodology presented produces an exact representation
of the Laplace transform of the availability function, A(¢, T). This availability
function represents the probability that a component functions at time ¢ with a
preventive maintenance period of T time units. T represents the age at which
the component is preventively maintained. If the component operates T time
units, it is preventively maintained. If the component fails before T time units
have passed, it receives a failure maintenance action. This type of
maintenance policy is commonly known as an age replacement preventive
maintenance policy. However, this research does not define the preventive
maintenance as a component replacement. This research requires that the
preventive maintenance restore the component to as good as new condition.
The actual action taken is defined by the specific situation.

The derived} model treats the age replacement period, T, as a

parameter. Thus, the component availability at a given time, ¢, is dependent




on the age replacement period, T. The methodology presented produced the
Laplace transform for A(¢, T). This transform could not be inverted exactly.
Thus an inversion estimation technique is applied to obtain an estimate of
A(t, T). This estimation process causes some anomalies for small values of T.
These are noted in Section 6.3.2. Validation tests of the mode! in both the
exponential case as well as the Weibull-exponential case are successful and

reviewed in Sections 7.1.1 and 7.1.2.

7.1.1 Exponential Validation Case

In this case, the component lifetime probability distribution as well as the
failure repair time and preventive maintenance service time are modeled as
exponential probability distributions. Each distribution is considered to be
unique and independent of each other.

This case is considered a validation case. Recall that if a component's
lifetime is considered to be exponential, then no benefit will result from
performing preventive maintenance. Under exponential assumptions, the
component does not exhibit the effects of aging. No matter how long the
component has been in operation, the probability of failure in the next instant
of time remains constant (constant failure rate, CFR). Since the component
does not age under these assumptions, no benefit results from purposely

removing an operating component for preventive maintenance.
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Three cases are implemented to validate the availability model in the
exponential case. All three cases support the validity of the availability model
developed and implemented in this research. First, the model is tested for
performance near time equal to zero (¢t = 0). The model assumes that the
component is working at t = 0 and the availability at this time is unity,

A(t = 0) = 1. Results presented in Section 5.4 support model performance in
this time region.

Second, the model is tested at very large values of time. Values of the
estimated availability function at these large values of time should converge to
the limiting availability value. Previous research results provide the values of
the limiting availability, A. The model is evaluated at large values of
continuous time, t, for several values of the age replacement period, T.
Results presented in Section 5.4 support the availability model performance as
the continuous time variable, ¢, grow large. In the tests, the model produces
results matching the limiting availability value obtained from previous research
results.

The first two methods of validation support the availability model validity
as t-0 and as t-»oco. However, model validity between these éxtremes is not
supported. The third test provides model validation for times between these
extremes. This test takes advantage of the exponential assumptions
discussed above. If the component's lifetime is assumed to be exponential
then the availability model should produce increasing values of availability as
the age replacement period, T, is increased. In this case, maximum average

availability as well as limiting availability is attained by performing no

109



preventive maintenance. Thus, the age replacement period, T, should
approach inﬁnity (T—0c0). The estimated availability function produces this
result. Table 5.1 shows that as T is increased, the average availability,

Anyg(t,T), increases. This is demonstrated at several values of continuous
time.

Overall, the exponential case validated the availability model produced
by this research. The model exhibited the expected behavior at extreme

values of continuous time, t, as well as at times between these extremes.

7.1.2 Weibull - Exponential Case

The Weibull-exponential case assumes that the component lifetime
probability distribution is Weibull. Furthermore, the shape parameter for the
Weibull is considered to be greater than zero. This causes the component
lifetime distribution to have an increasing failure rate (IFR). Under this
assumption, the component exhibits the effects of aging since the probability
that the component fails in the next instant of time is now dependent on the
component's age or in effect how long the component has been operated.
Both failure repair time and preventive maintenance time probability
distributions are modeled as unique exponential probability distributions. Al
probability distributions are considered to be independent of each other.

Three validation tests are performed in this case. The model is tested at the




extreme values of continuous time (t—=0, t»o0). The model is also tested for
recognition of average availability local maxima.

In the Weibull-exponential case, results validated the model
performance at very small values of continuous time, t—0. Table 6.1 details the
results. Values of the estimated availability function, A(¢, T) are taken at
t = 0.000001 for values of T between 0.1 and 750. In all cases, a value of unity
is obtained. This matches the expected theoretical value. The model assumes
that the component is functioning at time, ¢ = 0. By definition, the availability at
t = 0. is the probability the component is functioning at ¢t = 0. Thus, the
expected availability value at ¢t = 0. is one. Note that the estimated availability
function, A(t, T) for the Weibull-exponential case experiences discontinuities at
t = 0. due to the Laplace inversion estimation and the Weibull distribution
transform estimation techniques employed. Therefore, a value of ¢ = 0.000001
is used.

Results also validate the model performance at large values of
continuous time (t—o00). For this case the optimal replacement period for the
infinite time horizon, T;,, is calculated per previous research results. The
corresponding limiting value of availability, A is also calculated. As discussed
earlier, the limiting availability, A = tlin:o A(t) and the tlirgo Aqyg(t) are the same
when the limits exist. Thus, the values of the estimated A,,,(t, T;o) should
converge to A for large values of t. The value of A,(t, T;o) is calculated for
large values of time from the estimated A(t, T, ). Mathematica is used to
numerically integrate A(t, T;o) to obtain Ag,(2, T;,). Table 6.2 details the

results and shows an error of 107 at ¢t = 1000.
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The third validation test performed for the Weibull-exponential case
tested whether the model could recognize an average availability local
maxima. The test calculated values of A,,,(t, T) for values of T, close to and
including the value of T;o discussed above. In this validation test, limiting
values are required, thus, a large value of time, ¢t = 750., is used. Table 6.3
details the results. The model recognizes T;O as the replacement period that
maximizes average availability for very large values of time (t—o00).

The validation tests for the Weibull-exponential case demonstrate
model performance. Results validate model performance at small values of
time (t=0) and at large values of time (t—cc). Also, the model is shown to
recognize T;o as the age replacement period that maximizes average

availability for very large values of time (t—o0).

7.2 Maximizing Average Availability for Finite Component Economic
Lifespan

The results in Section 6.3.2 show that for finite time intervals, the optimal
infinite time horizon replacement interval, T;O, does not maximize average
availability. This result is shown for example in Figure 6.11 and is discussed in
Section 6.3.2. The conclusion is that the optimum infinite time horizon

preventive maintenance policy, T;o, does not maximize average availability for

some finite time periods.
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In actual operation, repairable components and systems are designed to
be used over a finite time interval. These lifecycle design constraints are very
important in determining the component and/or system maintenance
requirements. This research concludes that using the age replacement period
based upon an infinitely long operational interval does not maximize
component and/or system availability for a finite operating design lifespan.
This result is importarit to system and/or component lifecycle design

considerations.

7.3 _Summary of Significant Research Accomplishments

This research presents a unique and original approach to developing
the component availability function for the age replacement preventive
maintenance policy. The approach explicitly considered the effects of unique
failure repair time and preventive maintenance action time probability
distributions. The availability model included derivation of the partial Laplace
transform for cases where the time variable is truncated (i.e. does not
approach infinity). Normal Laplace transforms require the time variable to
have a range of [0,00]. The end result is an estimate of component availability
as a function of time, ¢, as well as the age replacement period, T. Thus, the
component availability function is defined as A(¢, T).

The availability model derived in this research produces an exact

representation of the Laplace transform the component availability function.
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This is defined as A*(s, T). Even in the exponential case, A* (s, T) could not be
inverted exactly to find A(t, T). A numerical Laplace transform inversion
estimation technique, the Stehfest method, is employed. The Stehfest method
and other inversion estimation techniques have been used to find estimates of
the time domain function at specific values of time. Thus, past research
applied these techniques for numerical results. However, this research
extended the use of the Stehfest method to estimating the function A(t, T)
from A™(s, T). The Wolfram Research, Inc. software package, Mathematica,
allowed the Stehfest series estimation technique to be applied in general and
thus produce an estimate of the availability function, A(t, T).

In the Weibull-exponential case, the partial Laplace transform must be
evaluated for the Weibull distribution and the Weibull survivor function. Recall
that in the partial Laplace transform, the time variable is truncated and thus
ranges over [0, 7], where 7 is finite. This research developed an exact infinite
series representation for the partial Laplace transform of the Weibull
distribution and survivor function. This development also yielded the normal
Laplace transform for the Weibull distribution and survivor function. In the
normal Laplace transform the time variable ranges over [0, co]. The latter
result is particularly useful in many applied probability applications such as
reliability studies.

Finally, this research demonstrated that average availability for a finite
time periods, 7, is not maximized by the optimal infinite time horizon
replacement period, T'x), at all values of 7. This result is important to lifecycle

design considerations for maintaining and servicing components and systems.
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Chapter 8

Further Research

8.1 Finite Economic Life Model

In the availability model developed and presented in this research the
component's economic life is not bounded. This model is useful for estimating
the effects of the infinite time horizon age replacement period (preventive
maintenance policy), T;o, on a finite economic component life. Definitive
values of the age replacement period value, T, require further research and
development of the availability model.

Let 7 be defined as the economic life of the component. Equation (4.8) is

modified to

A(t) =

Ry(O)+fi Ri(t—u)m(u)du, fort<T,
{ (8.1)

fir Ri(t—u) m(u) du, forT<t< 7.

Note that the continuous time variable, t, is now bounded by the economic

component life, 7. As in Chapter 4, the development proceeds with the
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construction of the Laplace transform of the availability function, A(t), stated in
equation (8.1). Recall that the definition of the Laplace transform for the

availability function is
A*(s) = [ et A(t)dt.

Applying (8.1) to this relationship, the following is obtained:

A(s) = (foTe_St (RL(t) + fot R (t — u)m(u) du)dt)

+ ( Je st ( [l 1 Rp(t — u)m(u) du) dt)

= Jo e Ru(t)dt + fg et (fy Relt — u)m(u) du) dt

+ fJre (ftt_T R; (t — u)m(u) du) dt

= fOTe_” (1-Fp(t)) dt + fOTfOt e "' Ry(t — u)m(u) du dt

+ f{ Jiy et Ro(t — w)m(u) dudt .
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= OTe“”dt— fOTe"”FL(t) dt—i—fOTfuT e ' Rp(t — u)m(u)dt du

+ [y [T et Ry (t — u) m(u) dt du + J7 [l et R (t — w)m(u) dt du

=1 Fr(s, T) 4 [y mw) [ et Ry(t — u) dt du

s

+f0Tm(u) fTTwe_StRL(t-— u)dtdu + f{ m(u) fuT e ' R(t—u)dtdu

—E‘ST * T T—u —3 u
=1 s F7 (s, T)+f0 m(u) fo e+ )RL(y) dy du

T T -3 U T T-u _g u
+ Jo m) fr_, e R(y)dydu + [{ m(u) f§ “ e @Y Ry (y) dydu

= LeT _ (s, T) + fy e tm(u) [, “e™Y Ry(y)dy du

3 u

—su T -3 T —su TU -3
+f0T_e m(u) [;_, e *YR(y)dydu + [7 e**m(v) [; e °Y R(y)dydu

-sT

= 1‘: — Fj(s, T) +f0T e **m(u) fOT e Y Rr(y)dy du

+ fr e mw) f; ¥ e7°Y Ri(y) dydu
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= (l—‘—f—i — F[ (s, T)) (1 + fOT e **m(u) du)

+ JT e m(u) [§ " €Y R (y) dy du

= (=2 - Fs, D) (1+m 6 )

+ [re7tmu) fy " e (1 - Fr(y)) dydu

= (=2 - R M) (14w, T)

+ e m(U)(l" Y Fj (s, T—u))du

as) = (s M) (14m(s,T))
+ Jf m(u) (e - ;e_”) du — [{ e **m(u) Fi(s, 7 —u)du (8.2)
18




The second term of the sum shown in equation (8.2) may be restated as

follows:

J m(u) (e"“;e'”) du = f;(%ﬁi) m(u)du — &= 7 m(u) du

il

_ %(m*(s, ) — m*(s, T)) g (fon(u) du — fon(u) du)

~ST

= %(m*(s,'r) - m*(s,T)) - & (M(T) - M(T))

Substituting this result into equation (8.2), we obtain

a) = (B2 - Fyo, 1) (14 m' @) + 1(m' (o) —m(s,T))

e—ST

— (M) - M) = ff e m(u) Fy(s, 7~ u)du (8.3)
Equation (8.3) provides the Laplace transform of the availability function for a
finite economic life span, 7. The renewal density, m(u), is defined and
discussed in Section 4.1.1. This density function may be found through the
density function for the time between renewal, h(t). M(u) is the renewal
function and is defined as

M(u) = [y m(z)dz.
Fj (s, T) is the partial Laplace transform of the component's lifetime probability

distribution.
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Additional research of this model is required. Methods to evaluate this
model need to be determined. This includes numerical approaches to evaluate
the availability function as well as optimization techniques to find an optimal
value of T that maximizes average availability over the component's finite
economic life span. One specific complication is the requirement for the
renewal density and renewal function. Numerical methods to accurately find or

estimate these functions must be found.

8.2 Service Time Probability Distributions

The specific cases examined in this research assume that the repair
time and the preventive maintenance service time probability distributions are
exponential. Section 2.3.3 provides a reference for this assumption [88].
However, other distributions may more accurately model the randomness of
service times since the exponential distribution is "memoryless". Under
exponential assumption, if a component is serviced for z time units, then the
probability that the unit is repaired in the next instant of time remains constant
for all values of =. Essenti‘ally, this means that if you have worked on repairing
(or preventively maintaining) a component for 1 second, 1 minute, 1 hour, 1
day, 1 month or 1 year then the probability that you fix the component in the
next instant of time remains constant no matter how long you have worked. In

most practical applications, the probability the component is fixed increases as
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the repair time increases. Thus a more practical probability distribution will be
IFR (increasing failure rate).

Two well known distributions may be IFR. The Weibull distribution is IFR
for values of the shape parameter greater than 1 (8 > 1). The log-normal
distribution may be both IFR and DFR (decreasing failure rate) [95]. For
example, for service times less than some threshold value, the log-normal
distribution may be DFR and for service times above this value it may be IFR.
However, the use of either distribution presents complications. The model
developed in this research requires the Laplace transform of the repair tirhe
and preventive maintenance service time distributions. This research presents
the Laplace transform for the Weibull distribution. However, the Laplace
transform for the log-normal distribution needs to be developed. The Weibull
Laplace transform is an infinite series and it is highly probable that the log-
normal may also be an infinite series.

In either case, the infinite series must be truncated to estimate the
required Laplace transform. Considering equation (4.16) this may require the
multiplication of two expressions containing many terms. For example,
consider a case where we have Weibull component lifetimes with unique
Weibull repair and preventive maintenance times. In the Weibull-exponential
case, 32 terms were used for the partial Weibull Laplace transform. If we use
32 terms in this new case, we are faced with multiplying a 32 term expression
by another 32 term expression. This results from multiplying f;(s, T) and g (s).
This represents the first term in equation (4.16). Obviously, the complexity has

increased. Methods to reduce the complexity need to be found.
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APPENDIX 1

Numerical Laplace Transform Inversion Test

The purpose of this appendix is to demonstrate that Mathematica aliows
the estimate of a timé domain function through the use of the numerical
Laplace transform inversion package, nlapinv.m . This numerical Laplace
transform inversion package is available from the Wolfram Résearch, Inc.
world wide web (WWW) site, http://mww.wri.com.

As explained in the main text, the numerical inversion techniques were
developed to obtain estimates of the time domain function at specific numerical
values of time. These numerical Laplace transform inversion techniques were
developed to be applied to Laplace transforms that cannot be inverted exactly
through conventional mathematical techniques. The Stehfest method
estimates this value through the application of a mathematical formula
containing two levels of summations. By leaving the time specification as a
parameter, t, in this case, Mathematica produces an estimate of the time
domain function (as a function of t) by evaluating the series contained in the

Stehfest formula explicitly. This methodology results in an estimate for the
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time domain function containing over 100 terms for N=6. For this reason, the
time domain function is not displayed.

The first Mathematica statement defines the test function A(s). In this
case it is equation (5.3). Mathematica input statements are represented by
boldface type. Mathematica output resulting from the input statements is

represented by italicized type.

Als_1= ((P+s) (R+s))/(((P+s) (R+s) (L+s))-(L R (P+s))+
((L R (P+s))-(P (L+s) (R+s))) Exp[-T (L+s)])

(P+s)(R+s))/

(-(LR(P+S) +(L+s)(P+s)(R+s)+
LR(P+s)-P(L+s)(R+S)

)

(L+s)T
E

The following statement loads the numerical Laplace transform
inversion package available from Wolfram Research, Inc. In this case the
Mathematica file containing the package is 'nlapinv.m' and is located in the

‘wnmath22' subdirectory on drive c.

<<c:\wnmath22\nlapinv.m

The following statement shows the Mathematica syntax for using the

Stehfest method for numerical Laplace transform inversion.
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?NLInvSteh

NLInvSteh[expr, s, t, n]
where expr = the Laplace transform expression to be inverted
s = the Laplace transform parameter
t =time
n = number of terms in series (!!! must be an even number !!!),
typically 6 < n < 20.

The function, InvA1(t), is defined as the Stehfest numerical Laplace
transform inversion of the Laplace transform function, A(s). Recall that
InvA1(t) represents an estimate of the time domain function obtained by

numerically inverting A(s).
InvA1[t_]=NLInvSteh[A[s],s,t,6];

The variables L, R and P define the exponential probability density
parameters for the lifetime, repair time and preventive maintenance time
densities respectively. These parameters were not numerically defined when
A(s) was entered. The parameters are numerically defined below. The mean
lifetime to mean failure repair time ratio is 1000 to 1 and the mean failure

repair time to mean preventive repair time ratio is 2.5 to 1.

L=1.
R=1000.
P=2500.

1

1000.
2500.

136




The age replacement parameter, T, is set to 0.6 for numerical
evaluation. Recall that T=0.6 means that a component is preventively
maintained when it attains an age of 0.6 time units. Complete renewal is
assumed for either failure or preventive maintenance actions thus the

component's age is reset to zero after either action is completed.

T=0.6
0.6
Evaluating InvA1(t) at t=5., we obtain a time domain function value of

2.19671.

InvA1[5.]

2.19671

- The following statement takes the original Laplace transform function,
A(s), and directly inverts the function numerically using the Stehfest method at

t=5. The value obtained is exactly the same.

NLinvSteh[A[s],s,5.,6]
2.19671
The age replacement parameter, T, is reset to a variable through the

Mathematica "Clear" statement.
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Clear[T]

The following two plots demonstrate that InvA1(t) is equivalent to the |
direct Stehfest numerical inversion of A(s) at discrete points in time. in the first
plot, the estimate time domain function, InvA1(t), is plotted for values of t
between 0.1 and 15. and T between 0.05 and 10. In the second plot, the
ranges of the variables t and T are exactly the same. However, note that the
function evaluated is the direct Stehfest numerical inversion of the original

Laplace transform function, A(s).

Plot3D[InvA1[t],{t,0.1,15.},{T,0.05,10.}]

Fig. A1.1 Plot of InvA1(t), 0.1 <t < 15,0.05 < T < 10.
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Plot3D[NLInvSteh[A[s],s,t,6],{t,0.1,15.},{T,0.05,10.}]

Fig. A1.2 Plot of Direct Stehfest Inversion, 0.1 <t<15.,0.05< T < 10.

The following output further demonstrates that invA1(t) is equivalent to
the direct Stehfest numerical inversion of the original Laplace transform
equation, A(s). The "Table" function provides specific function values for both
InvA1(t) and NLInvSteh[A[s], s,t,6]. For the ranges of t and T evaluated, the

results match exactly.

Table[invA1[t],{t,0.1,5.1,0.5},{T,0.1,5.1,0.5}]

{{1.42798, 1.0046, 0.999161, 0.999004, 0.999001, 0.999001, 0.999001,
0.999001, 0.999001, 0.999001, 0.999001},
{5.03848, 1.28497, 0.989437, 0.981246, 0.99531, 0.999234, 0.999514,
0.999277, 0.999116, 0.999045, 0.999017},
{7.19112, 1.66612, 1.18129, 1.03008, 0.993293, 0.99171, 0.995391,
0.997742, 0.998701, 0.998994, 0.99905},
{8.45334, 1.87848, 1.30932, 1.11227, 1.03173, 1.00353, 0.99663,
0.996403, 0.997421, 0.998233, 0.998681},
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{9.20271, 2.00367, 1.38155, 1.16618, 1.06857, 1.02401, 1.00579,
0.999572, 0.998077, 0.998084, 0.998398),

{9.65807, 2.07965, 1.42417, 1.19837, 1.09374, 1.04148, 1.01621,
1.00496, 1.00049, 0.998994, 0.998649),

{9.94162, 2.12695, 1.45032, 1.21786, 1.1098, 1.05396, 1.02486,
1.0103, 1.00346, 1.00049, 0.99933},

{10.1222, 2.15708, 1.46684, 1.22999, 1.11999, 1.06242, 1.03129,
1.01472, 1.00623, 1.00209, 1.00019},

{10.2394, 2.17664, 1.47752, 1.23773, 1.12653, 1.06807, 1.03588,
1.01812, 1.00855, 1.00356, 1.00106},

{10.3168, 2.18954, 1.48454, 1.24277, 1.13079, 1.07185, 1.039089,
1.02065, 1.01038, 1.0048, 1.00185},

{10.3685, 2.19817, 1.48922, 1.24609, 1.13361, 1.07441, 1.04134,
1.0225, 1.01179, 1.0058, 1.00252}}

Table[NLInvSteh[A[s],s,t,6],{t,0.1,5.1,0.5},{T,0.1,5.1,0.5}]

{{1.42798, 1.0046, 0.999161, 0.999004, 0.999001, 0.999001, 0.999001,

0.999001, 0.999001, 0.999001, 0.999001},

{5.03848, 1.28497, 0.989437, 0.981246, 0.99531, 0.999234, 0.999514,

0.999277, 0.999116, 0.999045, 0.999017},

{7.19112, 1.66612, 1.18129, 1.03008, 0.993293, 0.99171, 0.995391,

0.997742, 0.998701, 0.998994, 0.99905},

{8.45334, 1.87848, 1.30932, 1.11227, 1.03173, 1.00353, 0.99663,

0.996403, 0.997421, 0.998233, 0.998681},

{9.20271, 2.00367, 1.38155, 1.16618, 1.06857, 1.02401, 1.00579,

0.999572, 0.998077, 0.998084, 0.998398},

{9.65807, 2.07965, 1.42417, 1.19837, 1.09374, 1.04148, 1.01621,

1.00496, 1.00049, 0.998994, 0.998649},

{9.94162, 2.12695, 1.45032, 1.21786, 1.1098, 1.05396, 1.02486,

1.0103, 1.00346, 1.00049, 0.99933},

{10.1222, 2.15708, 1.46684, 1.22999, 1.11999, 1.06242, 1.03129,

1.01472, 1.00623, 1.00209, 1.00018},

{10.2394, 2.17664, 1.47752, 1.23773, 1.12653, 1.06807, 1.03588,

1.01812, 1.00855, 1.00356, 1.00106},

{10.3168, 2.18954, 1.48454, 1.24277, 1.13079, 1.07185, 1.03909,

1.02065, 1.01038, 1.0048, 1.00185)},

{10.3685, 2.19817, 1.48922, 1.24609, 1.13361, 1.07441, 1.04134,

1.0225, 1.01179, 1.0058, 1.00252}}
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APPENDIX 2

Mathematica Statements for the Exponential Case

The purpose of Appendix 2 is to provide an example of the Mathematica
input statements used for analysis of the exponential case referenced in
Section 5.3.1. Note that Mathematica input statements appear in boldface
type while Mathematica output, except graphic output, appears in italicized
type.

The following statement loads the "DiracDelta" package in Mathematica.
This package defines the diracdelta function also known as the Unitstep

function for use in Mathematica.

<<Calculus'DiracDelta’

The following statement defines the equation (5.3) which is also the first

part of equation (5.1) referenced in Section 5.3.
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Als_]I= ((P+s) (R+s))/(((P+s) (R+s) (L+s))-(L R (P+s)}+{((L R (P+s))«(P (L+s)
(R<s))) Exp[-T (L+s)])

(P+s)(R+s))/
((LR(P+s))+(L+s)(P+s)(R+s)+
LR(P+s)-P(L+s)(R+s)
)

(L+s)T
E

The following statement loads the numerical Laplace transform
inversion package, "nlapinv.m". Note that the package, "niapinv.m", is located

in the "wnmath22" subdirectory on drive c.

<<c:\wnmath22\nlapinv.m

This statement provides the correct syntax and use of the Stehfest

numerical inversion package.

?NLInvSteh

NLInvSteh[expr, s, t, n]
where expr = the Laplace transform expression to
be inverted
s = the Laplace transform parameter
t =time
n = number of terms in series (!!! must be
an even number 1),
typically 6 < n < 20.
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The following statement defines the function, InvA1(t). This function is a
numerical inversion of the function A(s) defined above. Note that the Stehfest
method is used for the numerical inversion. The resulting function, InvA1(t), is

a function of time, t and the age replacement parameter, T.

InvA1[t_]=NLInvSteh[A[s],s,t,6];

To obtain a functional estimate of the availability function, equation (5.2)
is applied as noted in Section 5.3.1. Note in this statement as well as the
previous statement, the actual output of the functions are suppressed by the
semicolon appearing at the end of the statement. These functions are created
by applying the Stehfest series expansion noted in Section 5.3.1. and become

very long due to nested summations within the Stehfest method.

TAvail[t_]=InvA1[t]-(Exp[-T L] UnitStep[t-T] InvA1[t-T]);

The following statements set the exponentially distributed lifetime,

failure repair time, and the preventive maintenance time parameters to 1., 10.

and 25. The ratio of mean lifetime to mean repair time is 10 and the ratio of

mean repair time to mean preventive maintenance time is 2.5.
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The following statement produces a three dimensional plot of the
availability function for the exponential case for time, t, range of [0.1 20.] and

age replacement, T, range of [0.05, 15]

Plot3D[TAvail[t],{t,0.1,20.},{T,0.05,15.}]

The following two dimensional plots represent "slices" of the three
dimension plot shown above. The variable representing continuous time, t, is

Fig. A2.1 A(t,T), 01 <t<20,005<T< 15

held constant while the age replacement period is allowed to vary. The

|
|
|
|
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response is the availability at a given point in time and is plotted against the
age replacement variable. Thus the graphs shown below are "slices" of Fig.
A2 .1 along the y-axis (representing the age replacement period, T) for constant

points in time.

Plot[TAvail[0.75],{T,0.001,0.749}]

l 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. A2.2 A(t,T), t=0.75,0.001 < T < 0.75

Plot[TAvail[1.],{T,0.01,2.5}]

Fig. A2.3 A(t,T), t=1,001<T <25
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Plot[TAvail[2.],{T,0.1,3.)]

0.8}

Fig. A2.4 A(tT), t=2.,01 < T< 3.

Plot[TAvail[5.],{T,0.1,6.)]

0.905

=
[\
w
o
v
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0.895¢

Fig. A2.5 A(t,T), t=5.,0.1 < T <86.

146




Plot[TAvail[10.],{T,0.1,7.}]

0.9}
0.875¢

0.825¢

0.775¢

Fig. A2.6 A(tT), t=10,01<T<7.

Plot[TAvail[20.],{T,0.1,10.)]

0.9
.88
.86
.84
.82

o O o O

o

.78

Fig. A2.7 A(t,T), t=20.,0.1 < T < 10.
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Plot[TAvail[50.],{T,0.1,25.}]

0.909¢
0.90875¢
0.9085¢

0.90825

0.90775

Fig. A2.8 A(t,T), t=50.,0.1 < T < 25.
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